Medical cannabis ( L.) is quickly becoming a central agricultural crop as its production has continued to increase globally. The recent release of the cannabis reference genomes provides key genetic information for the functional analysis of cannabis genes. Currently, however, the established tools for in vivo gene functional analysis in cannabis are very limited. In this study, we investigated the use of the tobacco rattle virus (TRV) as a possible tool for virus-induced gene silencing (VIGS) and virus-aided gene expression (VAGE). Using leaf photobleaching as a visual marker of () silencing, we found that VIGS was largely restricted to the agro-infiltrated leaves. However, when agro-infiltration was performed under vacuum, VIGS increased dramatically, which resulted in intense silencing and an increased photobleaching phenotype. The suitability of TRV as a vector for virus-aided gene expression (VAGE) was demonstrated by an analysis of DsRed fluorescence protein. Interestingly, a DsRed signal was also observed in glandular trichomes in TRV--infected plants, which suggests the possibility of trichome-related gene function analysis. These results indicate that TRV, despite its limited spread, is an attractive vector for rapid reverse-genetics screens and for the analysis of gene function in cannabis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838890 | PMC |
http://dx.doi.org/10.3390/plants11030327 | DOI Listing |
Plant Cell Environ
January 2025
Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.
View Article and Find Full Text PDFBiol Direct
January 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.
Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.
J Med Case Rep
January 2025
Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Congenital insensitivity to pain with anhidrosis is a rare but devastating hereditary disease. Congenital insensitivity to pain with anhidrosis is caused by a mutation in the neurotrophic receptor tyrosine kinase 1 gene (NRTK1). The condition is characterized by multiple injuries, recurrent infections, and mental retardation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!