A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition. | LitMetric

Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition.

Plants (Basel)

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

Published: January 2022

The use of phosphorus (P) to alleviate soil nutrient deficiency alters resources in plant and microbial communities, but it remains unknown how mixed and monospecific planting of forest tree species shape soil microbial structure and functions in response to drought and its interplay with phosphorus addition. We investigated the microbial structure and chemical properties of forest soils planted with monoculture, . monoculture, and their mixed cultures. The three planting systems were exposed to drought (30-35% water reduction) and the combination of drought with P. A well-watered treatment (80-85% water addition) of similar combinations was used as the control. Planting systems shaped the effects of drought on the soil microbial properties leading to an increase in nitrate nitrogen, urease activity, and microbial biomass carbon in the monocultures, but decrease in mixed cultures. In the monoculture of , addition of P to drought-treated soil increased enzyme activities, the concentration of dissolved organic nitrogen, and carbon, leading to increase in the total bacteria, G bacteria, and arbuscular mycorrhizal fungi. Except in the drought with P addition treatment, the impact of admixing on total phospholipid fatty acids (PLFAs), bacterial PLFA, and fungi PLFA was synergistic in all treatments. Our findings indicated that in monoculture of and its mixed planting with , greater biological activities could be established under drought conditions with the addition of P.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839870PMC
http://dx.doi.org/10.3390/plants11030319DOI Listing

Publication Analysis

Top Keywords

planting systems
12
soil microbial
12
microbial communities
8
phosphorus addition
8
microbial structure
8
monoculture mixed
8
mixed cultures
8
leading increase
8
drought
7
microbial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!