Carbon products such as anodes and ramming paste must have well-defined physical, mechanical, chemical, and electrical properties to perform their functions effectively in the aluminum electrolysis cell. The physical and mechanical properties of these products are assigned during the shaping procedure in which compaction stresses are applied to the green carbon paste. The optimization of the shaping process is crucial to improving the properties of the carbon products and consequently to increasing the energy efficiency and decreasing the greenhouse gas emissions of the Hall-Héroult process. The objective of this study is to experimentally investigate the effect(s) of the strain rate, of the stress maximum amplitude, and of the unloading level on the behavior of a green carbon paste subjected to cyclic loading. To this end, experiments consisting of (1) cyclic compaction tests at different maximum stress amplitudes and strain rates, and (2) cyclic compaction tests with different unloading levels were carried out. The study obtained the following findings about the behavior of carbon paste subjected to cyclic loads. The strain rate in the studied range had no effect either on the evolution of the permanent strain as a function of the cycle number, nor on the shape of the stress-strain hysteresis during the cyclic loading. Moreover, samples of the same density that had been subjected to different maximum stress amplitudes in their loading history did not have the same shape of the stress-strain curve. On the other hand, despite having different densities, samples subjected to the same number of cycles produce the same stress-strain curve during loading even though they were subjected to different maximum stress amplitudes in their loading histories. Finally, the level of unloading during each cycle of a cyclic test proved significant; when the sample was unloaded to a lower level of stress during each cycle, the permanent strain as a function of the cycle number was higher.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839192 | PMC |
http://dx.doi.org/10.3390/ma15031263 | DOI Listing |
Materials (Basel)
December 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Alite calcium sulfoaluminate (ACSA) cement is an innovative and environmentally friendly cement compared to ordinary Portland cement (OPC). The synthesis and hydration of ACSA clinkers doped with gradient sulfur were investigated. The clinker compositions and hydrated pastes were characterized by X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) to analyze its mineral contents, hydration products, heat release, pore structure, and microstructure.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Energy School, Xi'an University of Science and Technology, Xi'an 710054, China.
Fly ash-cement composite backfill slurry, prepared by partially replacing cement with fly ash, has been demonstrated to effectively reduce the mine backfill costs and carbon emissions associated with cement production. However, the use of fly ash often results in insufficient early and medium-term strength of the backfill material. To address the demand for high medium-term strength in backfill materials under continuous mining and backfilling conditions, this study developed a silica fume-fly ash-cement composite backfill slurry.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Azithromycin (AM) is one of the prescribed drugs in pandemic medication treatment which has paid great attention. We developed in this study a simply modified carbon paste electrode (CPE) to detect AM using poly-threonine (PT). PT or similar polymers are used as carriers to enhance the delivery and effectiveness of AM.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.
The effect of carbon fibers (Cf) and Ni nanoparticles addition on the melting point, microstructure, shear strength, indentation hardness and indentation creep of SnBi/Cu solder joints were explored. Composite solder with various Cf percentages (0, 0.02, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!