In recent years, natural-based polymeric composites have gained the attention of researchers and the industry due to their low environmental impact and good applicational properties. A promising example of these materials is polylactide-based composites filled with linseed cake. Even though they can be characterized by reduced brittleness and enhanced crystallization rate, their applicational potential cannot be fully evaluated without knowing their tribological properties. This paper is aimed to analyze the influence of the oil contained by the filler on the mechanical and frictional properties of polylactide-based composites. Specimens of unfilled polylactide and its composites containing 10 wt % of linseed cake with different oil content were prepared by injection molding. Their microhardness was measured by the Vickers method. The softening temperature was determined by the Vicat method. The scratch resistance of the samples was tested with the loading of 10, 20 and 40 N. The coefficient of friction was evaluated by the pin-on-plate method, using CoCrMo alloy as the counter surface. It was found that the oil content in the filler does not directly influence the mechanical and tribological properties, but the composite samples present comparable hardness and lower coefficient of friction than the unfilled polymer, so they can be a good eco-friendly alternative to the unfilled polylactide when the frictional properties are an important factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840766PMC
http://dx.doi.org/10.3390/ma15031237DOI Listing

Publication Analysis

Top Keywords

tribological properties
12
polylactide-based composites
12
properties polylactide-based
8
linseed cake
8
frictional properties
8
unfilled polylactide
8
oil content
8
coefficient friction
8
properties
6
composites
5

Similar Publications

Tribomechanical Properties of Glazes for Ceramic Tiles: A Novel Protocol for Their Characterization.

Materials (Basel)

December 2024

Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy.

The aim of the work is to design and validate a characterization protocol for glazes used in the ceramic tile industry to lead manufacturers and researchers towards the formulation of glazes with enhanced wear resistance properties. The focus of the protocol is addressed to determine surface parameters that strongly depend on glaze formulation and firing temperature. This protocol includes analytical (e.

View Article and Find Full Text PDF

Tribological Properties of Selected Ionic Liquids in Lubricated Friction Nodes.

Materials (Basel)

December 2024

Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Płock, Poland.

This article compares the rheological and tribological properties of three ionic liquids: Tributyl(methyl)phosphonium dimethyl phosphate 97%-MFCD, 1-Butyl-3-methylimidazolium hexafluorophosphate 97%-BMIMPF6, and 1-Butyl-3-methylimidazolium tetrafluoroborate 98%-BMIMBF4. Their density and kinematic viscosity at 20 °C and 40 °C were investigated, and tribological tests were carried out at the same temperatures with ball-on-disc contact. The test materials were made of 100Cr6 steel.

View Article and Find Full Text PDF

The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.

View Article and Find Full Text PDF

The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).

View Article and Find Full Text PDF

Corn stalk fibers extracted from cattle manure (CSFCM) represent a unique class of natural fibers that undergo biological pre-treatment during ruminant digestion. This study systematically investigates the optimization of CSFCM-reinforced friction materials through controlled silane treatment (2-10 wt.%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!