Currently, about 22% of global electricity is being supplemented by different renewable sources. Wind energy is one of the most abundant forms of renewable energy available in the atmospheric environment due to different air-currents spread over the troposphere and stratosphere. The demand of modern wind energy conversion system (WECS) has increased to achieve a suitable alternate renewable energy source. In this paper, after a brief introduction, the classification of WECS is reviewed with attractive illustrations. The various mechanical materials and electrical components of WECS are discussed. The flow of power in WECS and its control strategies are also been described. The wind energy conversion is carried out with a suitable controlling mechanism for power grid integration. A maximum power-point tracking controller is an effective controlling method to extract the maximum possible power from the turbines. The present trends in WECS and the scope for improvement and future prospects are discussed. The materials used for both the blade and generator have been found to be key elements of wind turbines. Recycling of the polymer matrix composite materials are found to be a great threat to wind power plants, as well as to their supply chain industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840529 | PMC |
http://dx.doi.org/10.3390/ma15031232 | DOI Listing |
Front Chem
January 2025
Information Science Academy, China Electronics Technology Group Corporation, Beijing, China.
Triboelectric nanogenerators (TENGs) have attracted great attention due to the simple manufacturing process, low cost, and diverse forms of energy harvesting. However, the energy collected by individual TENG is relatively limited, making it necessary to develop new method to enhance the energy harvesting capability of TENG. Here, we design a hybridized TENG that integrates a droplet-driven TENG and a wind-driven TENG, which exhibits excellent electrical performance.
View Article and Find Full Text PDFSci Rep
January 2025
Khuzestan Water & Power Authority (KWPA), Ahvaz, Iran.
Microgrid systems have evolved based on renewable energies including wind, solar, and hydrogen to make the satisfaction of loads far from the main grid more flexible and controllable using both island- and grid-connected modes. Albeit microgrids can gain beneficial results in cost and energy schedules once operating in grid-connected mode, such systems are vulnerable to malicious attacks from the viewpoint of cybersecurity. With this in mind, this paper explores a novel advanced attack model named the false transferred data injection (FTDI) attack aiming to manipulatively alter the power flowing from the microgrid to the upstream grid to raise voltage usability probability.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Ain Shams, Egypt.
The integration of renewable energy sources into microgrids presents some challenges due to the decreased system overall inertia associated with the presence of converter -based sources. To overcome this issue and to enhance the system inertia, various concepts for virtual inertial control have been proposed in the literature. However, the concept of improving the system frequency through wind turbines has gained widespread acceptance.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
Over time, the importance of virtual power plants (VPP) has markedly risen to seamlessly incorporate the sporadic nature of renewable energy sources into the existing smart grid framework. Simultaneously, there is a growing need for advanced forecasting methods to bolster the grid's stability, flexibility, and dispatchability. This paper presents a dual-pronged, innovative approach to maximize income in the day-ahead power market through VPP.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA.
Ocean weather comprises vortical and straining mesoscale motions, which play fundamentally different roles in the ocean circulation and climate system. Vorticity determines the movement of major ocean currents and gyres. Strain contributes to frontogenesis and the deformation of water masses, driving much of the mixing and vertical transport in the upper ocean.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!