The working environment for tubing in oil and gas fields is becoming more and more serious due to the exploration of unconventional oil and gas resources, leading to the increasing need for a protective internal coating to be used in tubing. Therefore, a new mica-graphene/epoxy composite coating with different graphene contents (0.0, 0.2, 0.5, 0.7, and 1.0 wt.%) was prepared to improve the tubing resistance to a corrosive medium, an autoclave was used to simulate the working environment, and an electrochemical workstation assisted by three-electrodes was used to study the electrochemical characteristics of the coating. The results showed that the addition of a certain amount of graphene into the mica/epoxy coating significantly improved the corrosion resistance of the composite coating, and when the graphene content increased, the corrosion resistance of the mica/epoxy coating first increased and then decreased when the corrosion current density of a 35 wt.% 800 mica/epoxy coating with a 0.7 wt.% graphene content was the lowest (7.11 × 10 A·cm), the corrosion potential was the highest (292 mV), the polarization resistance was the largest (3.463 × 10 Ω·cm), and the corrosion resistance was improved by 89.3% compared to the coating without graphene. Furthermore, the adhesion of the coating with 0.7 wt.% graphene was also the largest (8.81 MPa, increased by 3.4%) and had the smallest diffusion coefficient (1.566 × 10 cm·s, decreased by 76.1%), and the thermal stability improved by 18.6%. Finally, the corrosion resistance mechanism of the composite coating with different graphene contents at different soaking times was revealed based on the electrochemistry and morphology characteristics other than water absorption and contact angle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839737 | PMC |
http://dx.doi.org/10.3390/ma15031194 | DOI Listing |
ACS Nano
January 2025
College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.
View Article and Find Full Text PDFSmall
January 2025
School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.
Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China.
The slippery liquid-infused porous surfaces (SLIPS) have recently attracted significant interest in marine antifouling and corrosion protection. Nevertheless, the insufficient durability and corrosion resistance of SLIPS considerably affect their application potential. In this work, a preparation strategy for ultradurable slippery organic coating was proposed to combat biofouling and corrosion.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong. Electronic address:
Lead (Pb), a highly toxic heavy metal, poses a significant global health risk, particularly to children. Widely used in paint manufacturing for its remarkable corrosion-resistance properties Pb exposure has been linked to severe health issues, including reduced neurotransmitter levels, organ damage, potentially leading to death in extreme cases. Children Are particularly vulnerable, with Pb toxicity primarily affecting the brain, reproductive, kidneys, and cardiovascular systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!