Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The utility of recycling some intensive industries' waste materials for producing cellular porous ceramic is the leading aim of this study. To achieve this purpose, ceramic samples were prepared utilizing both arc furnace slag (AFS) and ceramic sludge, without any addition of pure chemicals, at 1100 °C. A series of nine samples was prepared via increasing AFS percentage over sludge percentage by 10 wt.% intervals, reaching 10 wt.% sludge and 90 wt.% AFS contents in the ninth and last batch. The oxide constituents of waste materials were analyzed using XRF. All synthesized samples were investigated using XRD to detect the precipitated minerals. The developed phases were β-wollastonite, quartz, gehlenite, parawollastonite and fayalite. The formed crystalline phases were changed depending on the CaO/SiO ratio in the batch composition. Sample morphology was investigated via scanning electron microscope to identify the porosity of the prepared ceramics. Porosity, density and electrical properties were measured; it was found that all these properties were dependent on the composition of starting materials and formed phases. When increasing CaO and AlO contents, porosity values increased, while increases in MgO and FeO caused a decrease in porosity and increases in dielectric constant and electric conductivity. Sintering of selected samples at different temperatures caused formation of two polymorphic structures of wollastonite, either β-wollastonite (unstable) or parawollastonite (stable). β-wollastonite transformed into parawollastonite at elevated temperatures. When increasing the sintering temperature to 1150 °C, a small amount of fayalite phase (FeSiO) was formed. It was noticed that the dielectric measurements of the selected sintered samples at 1100 °C were lower than those recorded when sintering temperatures were 1050 °C or 1150 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838387 | PMC |
http://dx.doi.org/10.3390/ma15031112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!