During the single-point incremental forming (SPIF) process, a sheet is formed by a locally acting stress field on the surface consisting of a normal and shear component that is strongly affected by friction of the dragging forming tool. SPIF is usually performed under well-lubricated conditions in order to reduce friction. Instead of lubricating the contact surface of the sheet metal, we propose an innovative, environmentally friendly method to reduce the coefficient of friction by ultrasonic excitation of the metal sheet. By evaluating the tool-workpiece interaction process as non-linear due to large deformations in the metal sheet, the finite element method (FEM) allows for a virtual evaluation of the deformation and piercing parameters of the SPIF process in order to determine destructive loads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838328PMC
http://dx.doi.org/10.3390/ma15031024DOI Listing

Publication Analysis

Top Keywords

ultrasonic excitation
8
spif process
8
metal sheet
8
investigation robotized
4
robotized incremental
4
incremental metal-sheet
4
metal-sheet forming
4
process
4
forming process
4
process ultrasonic
4

Similar Publications

Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.

View Article and Find Full Text PDF

Recently, Organ-on-a-Chip (OoC) platforms have arisen as an increasingly relevant experimental tool for successfully replicating human physiology and disease. However, there is a lack of a standard technology to monitor the OoC parameters, especially in a non-invasive and label-free way. Photoacoustic (PA) systems can be considered an alternative and accurate assessment method for OoC platforms.

View Article and Find Full Text PDF

The thickness loss caused by corrosion is a vital factor that threatens the health of shell structures. It is significant to perform a non-destructive quantitative evaluation of corrosion-thinning defects in plate structures. Based on the laser ultrasonic guided wavefield scanning technology, this paper proposes an instantaneous wavenumber multi-shot fusion method, which improves the performance of the instantaneous wavenumber imaging method.

View Article and Find Full Text PDF

Accurately determining the initial acoustic field excitation load of a piezoelectric ultrasonic probe is essential for simulating electrical signals and calculating wall thickness during ultrasonic internal inspection of pipelines. A new method for determining the initial excitation load of the acoustic field is proposed, incorporating the focusing effect of the curved surface of pipelines on the ultrasonic signal from the piezoelectric ultrasonic probe. Finite element models were established for the new and old methods using COMSOL software, facilitating the analysis of the initial acoustic field distribution and associated electrical signal characteristics.

View Article and Find Full Text PDF

In this study, we have investigated the surface-enhanced Raman scattering (SERS) spectra of myoglobin on silver substrates with different morphology. The aim was to determine the optimal parameters of analyte and substrate preparation for obtaining of high-amplitude SERS spectra of proteins. It is shown that not only the morphology of the silver film, but also the method of analyte molecules deposition on the SERS substrate plays an important role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!