In the present study, 2198 Al-Cu-Li alloys were successfully friction stir welded by using various welding speed ranges of 90~180 mm/min with an invariable rotation speed of 950 r/min. The effect of welding speed on microstructure evolution and mechanical properties of the joints was investigated. The results show that, with the welding speed decreasing, the size of the nugget zone (NZ) first increases and then decreases due to different welding temperatures. At a welding speed of 150 mm/min, the size of the NZ in all joints is the biggest and the "S" curve disappears. The equiaxed grains are finer, attributed to a higher degree of dynamic recrystallization, and a larger number of fine reprecipitated phase (δ', β' phases) particles are dispersively distributed in the NZ. Correspondingly, the joints have the highest tensile properties, and the tensile strength, yield strength and elongation are, respectively, 406 MPa, 289 MPa and 7.2%. However, compared to the base material, the tensile properties of all joints are reduced because a greater amount of δ' and β' phases particles are dissolved in the NZ. Only the joints produced at 150 mm/min are fractured in the TMAZ with detected deep dimples and tearing ridges, and a significant necking phenomenon is observed, which indicates a complete ductile fracture mode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838649 | PMC |
http://dx.doi.org/10.3390/ma15030969 | DOI Listing |
Sci Rep
January 2025
Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia.
Today, composite profiles of constant cross section are widely used in advanced engineering structures. The use of composite profiles in window and door structures can reduce thermal bridging and reduce energy consumption for heating and cooling. This article focuses on the production of new, thermoplastic-based structural pultruded profiles and their application in a PVC (polyvinylchloride) window structure as a reinforcement.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza, 12316, Egypt.
The complementary properties of corrosion resistance and ballistic resistance of AA5083 and AA7075, respectively, explain the significance of welding these two alloys in the marine armor industry. This study investigates a novel Al-SiC matrix reinforcement with a different SiC weight ratio in dissimilar friction stir welding of the AA5083/AA7075 joint at different transverse and rotational speeds. The study deduced that the novel matrix can play an important role in improving strength and ductility simultaneously.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Artificial Intelligence Research and Optimisation, Torrens University, Brisbane, QLD, 4006, QLD 4006, Austral, Australia.
This paper presents the Multi-Objective Ant Nesting Algorithm (MOANA), a novel extension of the Ant Nesting Algorithm (ANA), specifically designed to address multi-objective optimization problems (MOPs). MOANA incorporates adaptive mechanisms, such as deposition weight parameters, to balance exploration and exploitation, while a polynomial mutation strategy ensures diverse and high-quality solutions. The algorithm is evaluated on standard benchmark datasets, including ZDT functions and the IEEE Congress on Evolutionary Computation (CEC) 2019 multi-modal benchmarks.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
In this study, the melt pool formation behavior of high-speed laser-arc hybrid welding of aluminum plates was simulated using finite element analysis (FEA). To evaluate the heat input efficiencies of the laser and arc, standalone laser or arc welding experiments were conducted using the same arc or laser processing parameters as those employed in hybrid welding. These experiments were also simulated using FEA to calibrate the laser and arc heat adsorption parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!