The current study presents the electron beam melting (EBM) efficiency of copper technogenic material with high impurity content (Se, Te, Pb, Bi, Sn, As, Sb, Zn, Ni, Ag, etc.) by means of thermodynamic analysis and experimental tests. On the basis of the calculated values of Gibbs free energy and the physical state of the impurity (liquid and gaseous), a thermodynamic assessment of the possible chemical interactions occurring in the Cu-CuO-Me system in vacuum in the temperature range 1460-1800 K was made. The impact of the kinetic parameters (temperature and refining time) on the behaviour and the degree of removal of impurities was evaluated. Chemical and metallographic analysis of the obtained ingots is also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839568 | PMC |
http://dx.doi.org/10.3390/ma15030936 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, Faculty of Science and Technology, University Al Azhar Indonesia, Jakarta, Indonesia.
Curvature of a dielectric waveguide always leads to attenuation of the mode power as it propagates through the curved region. In single mode guides, bending loss becomes significant as the radius of curvature reduces and is strongly dependent on the confinement of the guided mode, so that weakly guiding waveguides can tolerate only large radii of curvature. In this paper we verify our new theoretical version on power loss prediction of S-bend optical waveguides by using analytical theory based on integration of absorption coefficient and compare it to the experimental measurement of such waveguide bends.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials Science and Engineering, University of Texas Dallas 800 W Campbell Rd Richardson TX 75080 USA
Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
Introduction: Cutaneous T-cell lymphoma (CTCL) is closely associated with the host microbiome. While recent evidence suggests that shifts in specific bacterial taxa are associated with response to UV-B, a form of non-ionizing radiation, the impact of ionizing radiation (IR) has not been investigated.
Methods: 16S rRNA and gene amplicon sequencing were performed on DNA extracted from swabs of lesional/non-lesional skin of 12 CTCL patients before/after TSEBT or local IR and from 25 matched healthy controls (HC).
J Cell Biol
March 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Upon invasion into the host cell, a subset of bacterial pathogens resides exclusively in the cytosol. While previous research revealed how they reshape the plasma membrane during invasion, subvert the immune response, and hijack cytoskeletal dynamics to promote their motility, it was unclear if these pathogens also interacted with the organelles in this crowded intracellular space. Here, we examined if the obligate intracellular pathogen Rickettsia parkeri interacts with the endoplasmic reticulum (ER), a large and dynamic organelle spread throughout the cell.
View Article and Find Full Text PDFCommun Chem
January 2025
ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France.
Serial macromolecular crystallography has become a powerful method to reveal room temperature structures of biological macromolecules and perform time-resolved studies. ID29, a flagship beamline of the ESRF 4th generation synchrotron, is the first synchrotron beamline in the world capable of delivering high brilliance microsecond X-ray pulses at high repetition rate for the structure determination of biological macromolecules at room temperature. The cardinal combination of microsecond exposure times, innovative beam characteristics and adaptable sample environment provides high quality complete data, even from an exceptionally small amount of crystalline material, enabling what we collectively term serial microsecond crystallography (SµX).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!