Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel.

Materials (Basel)

Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology Szczecin, Al. Piastów 19, 70-310 Szczecin, Poland.

Published: January 2022

Nanoflex stainless steel is a promising material for medical applications. However, improvement of its mechanical properties without compromising its corrosion resistance is still a challenge. In order to investigate the effect of the nitriding process on the corrosion and wear resistance of Sandvik Nanoflex steel, a number of processes were carried out in a gas atmosphere with differing ammonia contents in the temperature range of 425-475 °C for 4 h. The mechanical properties and wear resistance of the layers were tested using the nanoindentation and pin-on-disc methods, respectively. In order to assess corrosion resistance, potentiodynamic tests were carried out in Ringer's artificial body fluid and in a 3% aqueous solution of sodium chloride. The results are discussed herein with respect to the microstructural characteristics of the layers studied using light and scanning electron microscopy, X-ray diffraction phase analysis and wavelength dispersive X-ray microanalysis. The structure of nitrided layers included three zones: the subsurface zone composed of nitrides and the zones composed of metastable phases, i.e., the S phase (γN) and expanded martensite (αN) with possible precipitates of nitrides. The third zone adjacent to the steel core was enriched with carbon. The nitrided samples showed significant improvement in the wear rate while maintaining good corrosion resistance in comparison to the non-treated steel. We concluded that nitriding should be carried out at a temperature below 450 °C and in an atmosphere containing no more than approximately 50% ammonia in order to avoid nitrides precipitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838025PMC
http://dx.doi.org/10.3390/ma15030907DOI Listing

Publication Analysis

Top Keywords

corrosion resistance
12
stainless steel
8
mechanical properties
8
wear resistance
8
steel
5
resistance
5
structure properties
4
properties gas-nitrided
4
gas-nitrided precipitation-hardened
4
precipitation-hardened martensitic
4

Similar Publications

Cellulose nanofibers reinforced carboxylated nitrile butadiene rubber coatings for improved corrosion protection of mild steel.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:

The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material.

View Article and Find Full Text PDF

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization.

ACS Nano

January 2025

College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.

View Article and Find Full Text PDF

Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).

View Article and Find Full Text PDF

The slippery liquid-infused porous surfaces (SLIPS) have recently attracted significant interest in marine antifouling and corrosion protection. Nevertheless, the insufficient durability and corrosion resistance of SLIPS considerably affect their application potential. In this work, a preparation strategy for ultradurable slippery organic coating was proposed to combat biofouling and corrosion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!