Tailoring of Hierarchical Porous Freeze Foam Structures.

Materials (Basel)

Institute of Lightweight Engineering and Polymer Technology, University of Dresden, Holbeinstraße 3, 01307 Dresden, Germany.

Published: January 2022

Freeze foaming is a method to manufacture cellular ceramic scaffolds with a hierarchical porous structure. These so-called freeze foams are predestined for the use as bone replacement material because of their internal bone-like structure and biocompatibility. On the one hand, they consist of macrostructural foam cells which are formed by the expansion of gas inside the starting suspension. On the other hand, a porous microstructure inside the foam struts is formed during freezing and subsequent freeze drying of the foamed suspension. The aim of this work is to investigate for the first time the formation of macrostructure and microstructure separately depending on the composition of the suspension and the pressure reduction rate, by means of appropriate characterization methods for the different pore size ranges. Moreover, the foaming behavior itself was characterized by in-situ radiographical and computed tomography (CT) evaluation. As a result, it could be shown that it is possible to tune the macro- and microstructure separately with porosities of 49-74% related to the foam cells and 10-37% inside the struts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836913PMC
http://dx.doi.org/10.3390/ma15030836DOI Listing

Publication Analysis

Top Keywords

hierarchical porous
8
foam cells
8
microstructure separately
8
tailoring hierarchical
4
freeze
4
porous freeze
4
foam
4
freeze foam
4
foam structures
4
structures freeze
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!