The tightening torque applied to a screw in a provisional restoration immediately after implant placement in a fresh extraction socket is often too low to gain sufficient preload force. Therefore, abutment screw loosening is a common complication. The aim of this study was to investigate whether it is possible to increase the preload force of a given tightening torque by anodizing parts of the implant-abutment complex. In test group 1 (TG1), only the abutment screw was anodized, in four different stages, whereas in test group 2 (TG2), the abutment and the threaded sleeve were anodized in four anodizing stages (TG2a-TG2d). The control group (CG) consisted of non-anodized components. The results were tested for normal distribution, and the components were subsequently parametrically analyzed using a linear model. Both test groups showed higher preload forces compared to the non-anodized control group. The CG obtained an average preload force of 390 N at a tightening torque of 35 Ncm. Comparable values were already obtained at a tightening torque of 20 to 30 Ncm in TG1c/D and TG2b/d. It can be concluded that anodization of abutment screws and components is an effective measure to increase the preload force of the abutment screws by a given tightening torque.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837115PMC
http://dx.doi.org/10.3390/ma15030776DOI Listing

Publication Analysis

Top Keywords

preload force
20
tightening torque
20
anodizing stages
8
force abutment
8
abutment screw
8
increase preload
8
test group
8
control group
8
torque ncm
8
abutment screws
8

Similar Publications

A fixed support method for cryogenic silicon cavities of ultra-stable lasers for space applications.

Sci Rep

January 2025

School of Physics and Optoelectronic Engineering, Key Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province, Taiji Laboratory for Gravitational Wave Universe, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.

In this paper, a fixed support method for a cryogenic monocrystalline silicon Fabry-Pérot cavity of an ultra-stable laser for space applications is proposed. Through finite element analysis, the vibration sensitivity at the center of the cavity is below 10E-12/g; the fundamental frequency is 381 Hz; the thermal deformation is compensated by applying a preload force of about 3 N*m for a variation of 300 K to 124 K. Based on these analyses, an equal-mass cavity simulator was machined and mounted.

View Article and Find Full Text PDF

Bioinspired surface structures for added shear stabilization in suction discs.

Sci Rep

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Many aquatic organisms utilize suction-based organs to adhere to diverse substrates in unpredictable environments. For multiple fish species, these adhesive discs include a softer disc margin consisting of surface structures called papillae, which stabilize and seal on variable substrates. The size, arrangement, and density of these papillae are quite diverse among different species, generating complex disc patterns produced by these structures.

View Article and Find Full Text PDF

Mechanical characteristics of spinal cord tissue by indentation.

J Mech Behav Biomed Mater

December 2024

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:

The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.

View Article and Find Full Text PDF

Background: Ruptures of the anterior cruciate ligament (ACL) are common injuries. Reconstruction using autologous grafts is recommended to prevent further damage and functional impairment. Grafts are usually prepared with stabilizing sutures.

View Article and Find Full Text PDF

Modeling and application research of absolute gravimeter driven by a V-shaped linear ultrasonic motor.

Rev Sci Instrum

December 2024

State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China.

A V-shaped linear ultrasonic motor (LUSM), used as a driving element for the absolute gravimeter, generates structural vibrations when the motor starts and stops, which interfere with and influence the accurate measurement of the absolute gravimeter. In order to address this problem and provide better stability and measurement accuracy, this paper designs a fuzzy proportional integral differential (PID) controller and realizes the drive control of the motor on a field programmable gate array (FPGA) using the Verilog hardware description language (HDL). The advantages of the proposed controller are verified by comparing the simulation results with those of the traditional PID controller.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!