Dielectric Properties of Fluorinated Aromatic Polyimide Films with Rigid Polymer Backbones.

Polymers (Basel)

Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Published: February 2022

Fluorinated aromatic polyimide (FAPI) films with rigid polymer backbones have been prepared by chemical imidization approach. The polyimide films exhibited excellent mechanical properties including elastic modulus of up to 8.4 GPa and tensile strength of up to 326.7 MPa, and outstanding thermal stability including glass transition temperature () of 346.3-351.6 °C and thermal decomposition temperature in air () of 544.1-612.3 °C, as well as high colorless transmittance of >81.2% at 500 nm. Moreover, the polyimide films showed stable dielectric constant and low dielectric loss at 10-60 GHz, attributed to the close packing of rigid polymer backbones that limited the deflection of the dipole in the electric field. Molecular dynamics simulation was also established to describe the relationship of molecular structure and dielectric loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839285PMC
http://dx.doi.org/10.3390/polym14030649DOI Listing

Publication Analysis

Top Keywords

polyimide films
12
rigid polymer
12
polymer backbones
12
fluorinated aromatic
8
aromatic polyimide
8
films rigid
8
dielectric loss
8
dielectric
4
dielectric properties
4
properties fluorinated
4

Similar Publications

Traditional photosensitive polyimide (PSPI) materials require a high curing temperature and exhibit low transparency, limiting their applications in thermally sensitive optical devices. To overcome this challenge, soluble photosensitive polyimide resins were synthesized based on the structural design of a bio-based magnolol monomer. It is noteworthy that the PI photoresist, developed by using the as-prepared polyimides and non-toxic solvents (2-acetoxy-1-methoxypropane, PGEMA) and other additives, demonstrated an impressive low-temperature curing performance (180 °C).

View Article and Find Full Text PDF

Enabling ultra-flexible inorganic thin-film-based thermoelectric devices by introducing nanoscale titanium layers.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.

View Article and Find Full Text PDF

Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor.

Materials (Basel)

January 2025

Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.

A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.

View Article and Find Full Text PDF

An Investigation of the Indentation Elastic Modulus for Metal Films on Flexible Substrates Considering the Substrate Effect.

Materials (Basel)

January 2025

Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea.

The accurate measurement of the elastic modulus of thin metal films on flexible substrates is critical for understanding the mechanical reliability of flexible electronics. However, conventional methods, such as the Oliver-Pharr model, often underestimate the modulus due to substrate effects, particularly with low-modulus substrates like polyimide (PI). In this study, we propose an improved weighting model that replaces the empirical weighting factor with a variable X to better account for substrate contributions.

View Article and Find Full Text PDF

Self-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the molecular structure of conventional polyimides. The incorporation of cystamine enabled the films to maintain high transmittance (>87%) and tensile strength (>99 MPa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!