The engineering application of natural lignocellulosic fibers (NLFs) has been intensifying all over the world due to their low cost and abundance, as well as their being eco-friendly and presenting favorable technological properties in polymeric and cementitious composites. Brazil, especially the Amazon region, owing to its climate and geographic position, has an abundant variety of NLFs that are still unexplored with great potential for use in various composite materials and applications such as civil construction, automobile parts and armor. Therefore, this review aims to establish a parallel between the technological properties of cementitious composites reinforced with Amazon NLFs, both in fresh and hardened states, and to analyze, compare results and contribute to a better understanding of the similarities and differences between the types of reinforcements. A relevant contribution of this review is the possibility of improving knowledge about Amazon NLFs, showing their potential for application in eco-friendly materials, in addition to contributing to studies with new NLFs not yet applied in composite. For this, it was necessary to carry out a literature survey on the physical, chemical and mechanical properties of cementitious composites reinforced with NLFs, in addition to analyzing case studies involving fibers such as curaua, açai, bamboo, jute and sisal. It can be concluded that the physical and chemical characteristics of the Amazon NLFs directly influence the technological properties of cementitious compounds, such as mechanical strength and water absorption. However, there might be a need for surface treatment aimed at improving adhesion and durability of the cementitious composite. Finally, some suggestions for future research work are highlighted in order to show the need to continue investigations on the application of Amazon NLFs in cementitious composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840473PMC
http://dx.doi.org/10.3390/polym14030647DOI Listing

Publication Analysis

Top Keywords

cementitious composites
20
amazon nlfs
16
technological properties
12
properties cementitious
12
nlfs
8
composites reinforced
8
physical chemical
8
cementitious
7
composites
5
amazon
5

Similar Publications

This paper contributes to the expanding knowledge base on nanomaterial-enhanced cementitious composites, offering valuable insights for developing high-performance, sustainable concrete solutions. The study assessed the effects of three different types of nanomaterials-nano clay (NC), nano silica (NS), and nano cellulose (NCel)-on the compressive strength of high-early-strength concrete (HESC) through both experimental studies and a 2 factorial design. Incorporating nanomaterials into the HESC matrix led to a decrease in workability, with NCel demonstrating the least impact on this property across all studied replacement percentages.

View Article and Find Full Text PDF

In this project, cement-based composites reinforced with slag powder (abbreviated as SP), steel slag powder (abbreviated as SSP), and desulfurization gypsum (abbreviated as FGD) were used as the research objects, and the preparation, mechanical properties, and strengthening mechanism of the composites were systematically studied. A laser particle analyzer (Malvern Instruments Analysis) was used to determine that the particle sizes of the raw SSP, SP, and FGD materials were concentrated between 5 and 40 μm, indicating that they were fine-grained minerals. SSP and SP are highly active alkaline substances.

View Article and Find Full Text PDF

Removal, conversion and utilization technologies of alkali components in bayer red mud.

J Environ Manage

December 2024

China MCC22 Group Corporation Ltd., No.16 Xingfu Road, Fengrun District, Tangshan, Hebei, China.

Bayer red mud is a highly alkaline industrial solid waste generated during alumina production, and its massive discharge and stockpiling poses significant environmental risks. The strong alkalinity of red mud is a primary challenge limiting its effective utilization. This study systematically analyzes the composition and characteristics of alkaline components in red mud, emphasizing the roles of soluble free alkali and chemically bound alkali in regulating its alkalinity.

View Article and Find Full Text PDF

Investigation of 3D Printed Self-Sensing UHPC Composites Using Graphite and Hybrid Carbon Microfibers.

Sensors (Basel)

November 2024

Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.

This paper explores the development of 3D-printed self-sensing Ultra-High Performance Concrete (UHPC) by incorporating graphite (G) powder, milled carbon microfiber (MCMF), and chopped carbon microfiber (CCMF) as additives into the UHPC matrix to enhance piezoresistive properties while maintaining workability for 3D printing. Percolation curves were established to identify optimal filler inclusion levels, and a series of compressive tests, including quasi-static cyclic, dynamic cyclic, and monotonic compressive loading, were conducted to evaluate the piezoresistive and mechanical performance of 29 different mix designs. It was found that incorporating G powder improved the conductivity of the UHPC but decreased compressive strength for both mold-cast and 3D-printed specimens.

View Article and Find Full Text PDF

This research investigates the flexural performance of slabs reinforced with high-strength steel-strand mesh (HSSM) and engineered cementitious composites (ECCs). By employing finite element analysis (FEA) and theoretical modeling, this study aims to deepen the understanding of how these materials behave under bending stresses. A finite element model was developed to simulate the nonlinear behavior of ECCs during bending, considering critical elements such as tensile and compressive damage, as well as bond-slip interactions between the steel strands and the ECCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!