Effects of Extrusion and Irradiation on the Mechanical Properties of a Water-Collagen Solution.

Polymers (Basel)

Department of Process Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00 Prague, Czech Republic.

Published: January 2022

This article describes 1D extension tests on bovine collagen samples (8% collagen in water). At such a high collagen concentration, the mechanical properties of semi-solid samples can be approximated by hyperelastic models (two-parametric HGO and Misof models were used), or simply by Hooke's law and the modulus of elasticity E. The experiments confirm a significant increase in the E-modulus of the samples irradiated with high-energy electrons. The modulus E ~ 9 kPa of non-irradiated samples increases monotonically up to E ~ 250 kPa for samples absorbing an e-beam dose of ~3300 Gy. This amplification is attributed to the formation of cross-links by irradiation. However, E-modulus can be increased not only by irradiation but also by exposure to a high strain rate. For example, soft isotropic collagen extruded through a 200 mm long capillary increases the modulus of elasticity from 9 kPa to 30 kPa, and the increase is almost isotropic. This stiffening occurs when the corrugated collagen fibers are straightened and are aligned in the flow direction. It seems that the permanent structural changes caused by extrusion mitigate the effects of the ex post applied irradiation. Irradiation of extruded samples by 3300 Gy increases the modulus of E-elasticity only three times (from 30 kPa to approximately 90 kPa). Extruded and ex post irradiated samples show slight anisotropy (the stiffness in the longitudinal direction is on an average greater than the transverse stiffness).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840162PMC
http://dx.doi.org/10.3390/polym14030578DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
modulus elasticity
8
increases modulus
8
kpa kpa
8
samples
7
kpa
6
irradiation
5
collagen
5
effects extrusion
4
extrusion irradiation
4

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.

View Article and Find Full Text PDF

Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.

Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!