Cleft palate (CP) is one of the most common birth defects, presenting a multitude of negative impacts on the health of the patient. It also leads to increased mortality at all stages of life, economic costs and psychosocial effects. The embryological development of CP has been outlined thanks to the advances made in recent years due to biomolecular successions. The etiology is broad and combines certain environmental and genetic factors. Currently, all surgical interventions work off the principle of restoring the area of the fissure and aesthetics of the patient, making use of bone substitutes. These can involve biological products, such as a demineralized bone matrix, as well as natural-synthetic polymers, and can be supplemented with nutrients or growth factors. For this reason, the following review analyzes different biomaterials in which nutrients or biomolecules have been added to improve the bioactive properties of the tissue construct to regenerate new bone, taking into account the greatest limitations of this approach, which are its use for bone substitutes for large areas exclusively and the lack of vascularity. Bone tissue engineering is a promising field, since it favors the development of porous synthetic substitutes with the ability to promote rapid and extensive vascularization within their structures for the regeneration of the CP area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840587 | PMC |
http://dx.doi.org/10.3390/polym14030547 | DOI Listing |
BMC Oral Health
January 2025
Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
Purpose: Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture.
Materials And Methods: 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments.
J Dent Sci
January 2025
Department of Oral Surgery, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
Background/purpose: Autologous dentin materials are among the most promising bone substitutes for preventing osseous defects on the distal side of the lower second molar. This study aimed to investigate the effects of autologous demineralized dentin matrix on postoperative complications and wound healing after lower third molar surgery.
Materials And Methods: Thirteen patients with bilateral symmetrical lower third molars participated in this split-mouth randomized clinical trial.
ACS Omega
January 2025
Shaanxi University of Chinese Medicine, Xianyang 712046, China.
Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Cell Biology, Federal University of Paraná, Post box-19031, Zip code -81531-970, Curitiba, PR, Brazil.
Unlabelled: Bone tissue substitutes are increasing in importance. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) act as a cell matrix and improve its mechanical properties. One of their raw materials is marine-origin by-products.
View Article and Find Full Text PDFGeorgian Med News
November 2024
1Private dental Clinic "Vurall Dent" Peja, Republic of Kosovo.
Introduction: The primary objective of any implant system is to achieve firm fixation to the bone, which can be influenced by both biomechanical factors and biomaterial selection. An array of materials is used for the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!