This study evaluated the in vitro characterizations of biodegradable hydrogel beads with calcium phosphate bone cement (CPC). Commercial fast-setting CPC and hydrogel beads were compared with 25%-volume hydrogel in CPC (C/0.25) in vivo. The histological behaviors and absorption rates of CPC only, hydrogel beads, and hydrogel/CPC composite were measured and compared at 4, 8, and 12 weeks. The results indicated that the C/0.25 composite can be molded and does not disintegrate when immersed in the solution, but this delays the phase transition of the CPC into the product in the early reaction process. The osteoprogenitor D1 cell affinity of the C/0.25 composite was equally competitive with that of the CPC-only. Adding hydrogel beads to CPC did not inhibit cell proliferation as well as differentiation of osteoprogenitor cells. In vivo histological evaluations did not indicate any significant difference in the CPC-only, hydrogel-only, and C/0.25 composite after 4 weeks of implantation; however, significantly less residue was observed in the C/0.25 composite relative to the CPC-only after 8 weeks. After 12 weeks of hydrogel beads implantation, the hydrogel degraded substantially, creating vacancies that were subsequently occupied by a large amount of soft tissue. New bone was formed in large quantities in the C/0.25; therefore, the C/0.25 composite is a promising option for a wide range of dental, craniofacial, and orthopedic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838511PMC
http://dx.doi.org/10.3390/polym14030505DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
24
c/025 composite
20
biodegradable hydrogel
8
calcium phosphate
8
phosphate bone
8
bone cement
8
cpc hydrogel
8
vivo histological
8
hydrogel
7
c/025
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!