A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite. | LitMetric

Wood plastic composites (WPCs) specimens containing high-density polyethylene (HDPE) and wood pruning waste were manufactured and evaluated for their mechanical properties. Pecan waste was used as an accessible and sustainable source in this study, and the effects of its particle size and concentration on WPC strengths were evaluated. Pecan waste was milled and sieved to various particle sizes, and testing samples were fabricated by mixing them in a twin-screw extruder and injection molding. A coupling agent was used to create a stable bond between the HDPE and wood. Both tensile modulus and strength were increased with an increasing pecan flour concentration up to about 60 weigh percent. A micromechanical model is proposed for predicting the mechanical properties of the wood flour/fiber reinforce composite. This model uses a correction factor of an elliptical of carried sizes and shapes. The preliminary results of the model have a high correlation with the experimental values of the composite in all mesh sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839127PMC
http://dx.doi.org/10.3390/polym14030504DOI Listing

Publication Analysis

Top Keywords

properties wood
8
wood plastic
8
plastic composites
8
hdpe wood
8
mechanical properties
8
pecan waste
8
wood
5
micromechanical modeling
4
modeling tensile
4
tensile properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!