A small, low-cost, self-produced photometer is implemented into a synthesis robot and combined with a modified UV chamber to enable automated sampling and online characterization. In order to show the usability of the new approach, two different reversible addition-fragmentation chain transfer (RAFT) polymers were irradiated with UV light. Automated sampling and subsequent characterization revealed different reaction kinetics depending on polymer type. Thus, a long initiation time (20 min) is required for the end-group degradation of poly(ethylene glycol) ether methyl methacrylate (poly(PEGMEMA)), whereas poly(methyl methacrylate) (PMMA) is immediately converted. Lastly, all photometric samples are characterized via size-exclusion chromatography using UV and RI detectors to prove the results of the self-produced sensor and to investigate the molar mass shift during the reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838243PMC
http://dx.doi.org/10.3390/polym14030361DOI Listing

Publication Analysis

Top Keywords

automated sampling
8
improvement high-throughput
4
high-throughput experimentation
4
experimentation synthesis
4
synthesis robots
4
robots implementation
4
implementation tailor-made
4
tailor-made sensors
4
sensors small
4
small low-cost
4

Similar Publications

Background: Detection of serum-specific immunoglobulin G (sIgG) to Aspergillus fumigatus traditionally relied on precipitin assays, which lack standardization and have poor analytical sensitivity. Automated quantitative immunoassays are now more widely used alternatives. A challenge, however, is determining reference interval (RI) cutoffs indicative of disease presence.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.

View Article and Find Full Text PDF

Multidimensional morphological analysis of live sperm based on multiple-target tracking.

Comput Struct Biotechnol J

December 2024

Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.

Manual semen evaluation methods are subjective and time-consuming. In this study, a deep learning algorithmic framework was designed to enable non-invasive multidimensional morphological analysis of live sperm in motion, improve current clinical sperm morphology testing methods, and significantly contribute to the advancement of assisted reproductive technologies. We improved the FairMOT tracking algorithm by incorporating the distance and angle of the same sperm head movement in adjacent frames, as well as the head target detection frame IOU value, into the cost function of the Hungarian matching algorithm.

View Article and Find Full Text PDF

Background: EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging.

View Article and Find Full Text PDF

This paper outlines a practical method for validating quantitative-qualitative techniques used to detect genetic material through qRT-PCR, specifically focusing on SARS-CoV-2 testing and adhering to ISO/IEC 17025:2018 accreditation standards. Despite the prevalence of quantitative-qualitative screening in genetic testing, comprehensive validation guidelines remain a notable gap in the field. Such guidelines could be applied to other molecular testing areas that rely on these techniques, particularly those involving sample handling, automated extraction, and amplification processes, which can significantly impact results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!