Background: Endometriosis diagnosis constitutes a considerable economic burden for the healthcare system with diagnostic tools often inconclusive with insufficient accuracy. We sought to analyze the human miRNAome to define a saliva-based diagnostic miRNA signature for endometriosis.
Methods: We performed a prospective ENDO-miRNA study involving 200 saliva samples obtained from 200 women with chronic pelvic pain suggestive of endometriosis collected between January and June 2021. The study consisted of two parts: (i) identification of a biomarker based on genome-wide miRNA expression profiling by small RNA sequencing using next-generation sequencing (NGS) and (ii) development of a saliva-based miRNA diagnostic signature according to expression and accuracy profiling using a Random Forest algorithm.
Results: Among the 200 patients, 76.5% (n = 153) were diagnosed with endometriosis and 23.5% (n = 47) without (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). Quantification of the filtered reads and identification of known miRNAs yielded ~190 M sequences that were mapped to 2561 known miRNAs. Of the 2561 known miRNAs, the feature selection with Random Forest algorithm generated after internally cross validation a saliva signature of endometriosis composed of 109 miRNAs. The respective sensitivity, specificity, and AUC for the diagnostic miRNA signature were 96.7%, 100%, and 98.3%.
Conclusions: The ENDO-miRNA study is the first prospective study to report a saliva-based diagnostic miRNA signature for endometriosis. This could contribute to improving early diagnosis by means of a non-invasive tool easily available in any healthcare system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836532 | PMC |
http://dx.doi.org/10.3390/jcm11030612 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!