Controlling of morphology from nanoparticles to magnetic nanotubes and hollow nanorods are interesting for developing the photo-active materials and their applications in the field of photocatalysis and decontamination of aquatic effluents. In the current study, titanium dioxide nanoparticles and nanocomposites were prepared by different techniques to produce various morphologies. The nanoparticles of pure titanium dioxide were prepared by sol-gel technique. Magnetic nanotubes and hollow nanorods were prepared by combining titanium with di- and tri-valent iron through two stages: urea hydrolysis and solvent thermal technique. According to the Kirkendall effect, magnetic nanotubes were fabricated by unequal diffusion of Fe, Fe and Ti inside the nanocomposite to produce maghemite-titanian phase. In the same trend, hollow nanorods were synthesized by limited diffusion of both trivalent iron and tetravalent titanium producing amorphous structure of titanium iron oxides. The magnetic and optical properties showed that these nanotubes and hollow nanorods are magnetically active and optically more effective compared with titanium dioxide nanoparticles. Therefore, the Naphthol green B dye completely disappeared after 45 min of UV light irradiation in presence of the hollow nanorods. The kinetic study confirmed the high performance of the hollow nanorods for the photocatalytic degradation of Naphthol green B compared with titanium dioxide nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840765 | PMC |
http://dx.doi.org/10.3390/nano12030440 | DOI Listing |
Subwavelength light trapping in periodic structures with high quality (Q) factors is discovered to hold strong light-matter interactions for a variety of applications. Although dual-band or even multiple-band high-Q resonances are applicable to extend the operation range of a nanophotonic device, manipulating the high-Q modes individually is a necessity to implement plural intriguing applications in one system as well as optimize the capabilities across each spectrum. In this work, a novel approach is presented to independently control dual high-Q modes with distinct origins in an all-dielectric metasurface system.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University 197 Inje-ro Gimhae Gyeongnam-do 50834 Republic of Korea
Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.
View Article and Find Full Text PDFTalanta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:
The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Emergency, Shandong University, Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China, Jinan, Shandong, 250100, CHINA.
Metallic oxides especially lithium and titanium oxides are well known for their osteogenic properties. When combined in the right proportions, metallic oxides can have an even greater impact. However, releasing ions from oxides can lead to oxidative stress, which is harmful to cell growth.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!