The work herein presented aims to develop and characterize carvedilol (CVD) releasable non-water-soluble monolayers and a multilayer patch made of ultrathin micron and submicron fibers for drug delivery into the sublingual mucosa. Firstly, the developed formulations containing CVD within different biopolymers (PDLA, PCL, and PHB) were characterized by scanning electron microscopy (SEM), attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), and for their in vitro drug release. SEM micrographs assessed the fiber morphology attained by adding carvedilol. ATR-FTIR spectra revealed good chemical compatibility between CVD and the tested biopolymers, whereas DSC and WAXS confirmed that CVD was in an amorphous state within the biopolymeric fibers. In vitro release studies showed enhanced CVD release kinetics from the electrospun biopolymer monolayers compared to the dissolution rate of the commercial form of the pure drug, except for the slow-releasing PDLA fibers. Finally, the selected CVD-loaded layer, i.e., electrospun PHB, was built into a three-layer patch to tackle mucosa adhesion and unidirectional release, while retaining the enhanced release kinetics. The patch design proposed here further demonstrates the potential of the electro-hydrodynamic processing technology to render unique mucoadhesive controlled delivery platforms for poorly water-soluble drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840269 | PMC |
http://dx.doi.org/10.3390/nano12030438 | DOI Listing |
While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing Tech University, College of Chemical Engineering, Nanjing, CHINA.
The wide application of zeolite Y in petrochemical industry is well known as one of the milestones in zeolite chemistry and heterogeneous catalysis. However, the traditional organic-free synthesis typically produces (hydro)thermally unstable zeolite Y with Si/Al atomic ratio (SAR) less than 2.5.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Business, Xi'an University of Finance and Economics, Xi'an, 710100, China.
The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFChemosphere
January 2025
DASCO Inc, Centennial, Colorado, USA.
This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!