Tunable Lifetime and Nonlinearity in Two Dimensional Materials Plasmonic-Photonic Absorber.

Nanomaterials (Basel)

School of Physics and Information Engineering, Guangdong University of Education, No. 351 Xinggang Road, Guangzhou 510303, China.

Published: January 2022

We investigate a framework of local field, quality factor and lifetime for tunable graphene nanoribbon plasmonic-photonic absorbers and study the second order and third order nonlinear optical response of surface plasmons. The energy exchange of plasmonic-photonic absorber occurs in two main ways: one way is the decay process of intrinsic loss for each resonant mode and another is the decay process of energy loss between graphene surface plasmon (GSP) mode and the external light field. The quality factor and lifetime of the plasmonic-photonic absorber can be obtained with using the coupled mode theory (CMT) and finite difference time domain (FDTD) method, which are effectively tunable with changing Fermi energy, carrier mobility and superstrate refractive index. The evolutions of total energy and lifetime of GSP are also shown, which are helpful for the study of micro processes in a two-dimensional material plasmonic-photonic absorber. The strongly localized fundamental field induces a desired increase of second harmonic (SH) wave and third harmonic (TH) wave. The manipulation of the quality factor and lifetime of the GSP makes graphene an excellent platform for tunable two-dimensional material plasmonic-photonic devices to realize the active control of the photoelectric/photothermal energy conversion process and higher harmonic generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839502PMC
http://dx.doi.org/10.3390/nano12030416DOI Listing

Publication Analysis

Top Keywords

plasmonic-photonic absorber
16
quality factor
12
factor lifetime
12
field quality
8
decay process
8
lifetime gsp
8
two-dimensional material
8
material plasmonic-photonic
8
harmonic wave
8
plasmonic-photonic
6

Similar Publications

Reconfigurable plasmonic-photonic electromagnetic devices have been incessantly investigated for their great ability to optically modulate through external stimuli to meet today's emerging needs, with chalcogenide phase-change materials being promising candidates due to their remarkably unique electrical and optics, enabling new perspectives in recent photonic applications. In this work, we propose a reconfigurable resonator using planar layers of stacked ultrathin films based on Metal-dielectric-PCM, which we designed and analyzed numerically by the Finite Element Method (FEM). The structure is based on thin films of Gold (Au), aluminum oxide (AlO), and PCM (InSbTe) used as substrate.

View Article and Find Full Text PDF

Hot carrier extraction from plasmonic-photonic superimposed heterostructures.

J Chem Phys

June 2022

Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.

Plasmonic nanostructures have been exploited in photochemical and photocatalytic processes owing to their surface plasmon resonance characteristics. This unique property generates photoinduced potentials and currents capable of driving chemical reactions. However, these processes are hampered by low photon conversion and utilization efficiencies, which are issues that need to be addressed.

View Article and Find Full Text PDF

Tunable Lifetime and Nonlinearity in Two Dimensional Materials Plasmonic-Photonic Absorber.

Nanomaterials (Basel)

January 2022

School of Physics and Information Engineering, Guangdong University of Education, No. 351 Xinggang Road, Guangzhou 510303, China.

We investigate a framework of local field, quality factor and lifetime for tunable graphene nanoribbon plasmonic-photonic absorbers and study the second order and third order nonlinear optical response of surface plasmons. The energy exchange of plasmonic-photonic absorber occurs in two main ways: one way is the decay process of intrinsic loss for each resonant mode and another is the decay process of energy loss between graphene surface plasmon (GSP) mode and the external light field. The quality factor and lifetime of the plasmonic-photonic absorber can be obtained with using the coupled mode theory (CMT) and finite difference time domain (FDTD) method, which are effectively tunable with changing Fermi energy, carrier mobility and superstrate refractive index.

View Article and Find Full Text PDF

Integration of functional infrared photodetectors on silicon platforms has been gaining attention for diverse applications in the fields of imaging and sensing. Although III-V semiconductor is a promising candidate for infrared photodetectors on silicon, the difficulties in directly growing high-quality III-V on silicon and realizing functionalities have been a challenge. Here, we propose a design of III-V nanowires on silicon (100) substrates, which are self-assembled with gold plasmonic nanostructures, as a key building block for efficient and functional photodetectors on silicon.

View Article and Find Full Text PDF

Upconversion photoluminescence (UCPL) of rare-earth ions has attracted much attention due to its potential application in cell labeling, anti-fake printing, display, solar cell and so forth. In spite of high internal quantum yield, they suffer from very low external quantum yield due to poor absorption cross-section of rare-earth ions. In the present work, to increase the absorption by rare earth ions, we place the emitter layer on a diffractive array of Al nanocylinders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!