We studied insulin binding and glucose transport in isolated adult cardiomyocytes from rats with 2-wk streptozotocin-induced diabetes. At 37 degrees C, cells from diabetic rats bound less 125I-insulin and exhibited lower rates of 3-O-methylglucose transport than cells from control rats. In contrast, the amount of 125I-insulin bound to myocytes at 4 degrees C was the same in both groups. Preincubation of cells from both groups with 10-10,000 ng/ml insulin significantly increased their basal rates of glucose transport by approximately 40%. However, the augmented rates in diabetics were still approximately 36% lower than the corresponding insulin-stimulated rates in the controls. When the glucose transport data were expressed as percent maximal insulin effect and plotted as a function of the amount of insulin bound, the curves obtained from both diabetic and nondiabetic controls were superimposable. These data demonstrate that 1) heart cells from diabetic rats bind less insulin than from control rats under conditions in which they exhibit impaired glucose transport rates, 2) there is no apparent difference in total receptor number between the two groups, but internalization of intact insulin appears to be diminished in diabetes, 3) coupling exists between insulin binding and glucose transport in both groups, and 4) these impaired processes are completely reversed by insulin treatment in vivo but not in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.1986.250.4.E402DOI Listing

Publication Analysis

Top Keywords

glucose transport
24
insulin binding
12
binding glucose
12
insulin
9
cells diabetic
8
diabetic rats
8
control rats
8
transport
7
glucose
6
rats
5

Similar Publications

Originally developed for use in type 2 diabetes mellitus (T2DM), sodium-glucose co-transporter-2 (SGLT2) inhibitors demonstrated diverse cardiovascular- and kidney-protective effects in large outcome trials. Their subsequent approval as a treatment for chronic kidney disease (CKD) marked a pivotal shift in the landscape of CKD management. Further to this, the approval of dapagliflozin and empagliflozin for use in patients with CKD with and without T2DM afforded new treatment opportunities for this population.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.

View Article and Find Full Text PDF

A murine model of acute and prolonged abdominal sepsis, supported by intensive care, reveals time-dependent metabolic alterations in the heart.

Intensive Care Med Exp

January 2025

Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium.

Background: Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae.

View Article and Find Full Text PDF

SGLT2 inhibitors have emerged as a remarkable class of drugs, revolutionizing the management of various medical conditions beyond their initial purpose of controlling diabetes. With their proven benefits in cardiovascular health, kidney disease, hypertension, and even potential applications in cancer treatment, SGLT2 inhibitors have broadened their scope. While concerns about adverse effects and contraindications exist, these medications hold great promise for a diverse range of patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!