Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bone is the most common site of metastasis in breast cancer. Metastasis is promoted by acidosis, which is associated with osteoporosis. To investigate how acidosis could promote bone metastasis, we compared differentially expressed genes (DEGs) in MDA-MB-231 cancer cells in acidosis, bone metastasis, and bone metastatic tumors. The DEGs were identified using Biojupies and GEO2R. The expression profiles were assessed with Morpheus. The overlapping DEGs between acidosis and bone metastasis were compared to the bulk of the DEGs in terms of the most important genes and enriched terms using CytoHubba and STRING. The expression of the genes in this overlap filtered by secreted proteins was assessed in the osteoporosis secretome. The analysis revealed that acidosis-associated transcriptomic changes were more similar to bone metastasis than bone metastatic tumors. Extracellular matrix (ECM) organization would be the main biological process shared between acidosis and bone metastasis. The secretome genes upregulated in acidosis, bone metastasis, and osteoporosis-associated mesenchymal stem cells are enriched for ECM organization and angiogenesis. Therefore, acidosis may be more important in the metastatic niche than in the primary tumor. Acidosis may contribute to bone metastasis by promoting ECM organization. Untreated osteoporosis could favor bone metastasis through the increased secretion of ECM organization proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834614 | PMC |
http://dx.doi.org/10.3390/cells11030544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!