Despite enormous improvements in pre-clinical and clinical research, acute leukemia still represents an open challenge for pediatric hematologists; both for a significant relapse rate and for long term therapy-related sequelae. In this context, the use of an innovative technology, such as induced pluripotent stem cells (iPSCs), allows to finely reproduce the primary features of the malignancy and can be exploited as a model to study the onset and development of leukemia in vitro. The aim of this review is to explore the recent literature describing iPSCs as a key tool to study different types of hematological malignancies, comprising acute myeloid leukemia, non-down syndrome acute megakaryoblastic leukemia, B cell acute lymphoblastic leukemia, and juvenile myelomonocytic leukemia. This model demonstrates a positive impact on pediatric hematological diseases, especially in those affecting infants whose onsets is found in fetal hematopoiesis. This evidence highlights the importance of achieving an in vitro representation of the human embryonic hematopoietic development and timing-specific modifications, either genetic or epigenetic. Moreover, further insights into clonal evolution studies shed light in the way of a new precision medicine era, where patient-oriented decisions and therapies could further improve the outcome of pediatric cases. Nonetheless, we will also discuss here the difficulties and limitations of this model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833985PMC
http://dx.doi.org/10.3390/cells11030476DOI Listing

Publication Analysis

Top Keywords

induced pluripotent
8
pluripotent stem
8
stem cells
8
leukemia
6
cells step
4
step modeling
4
pediatric
4
modeling pediatric
4
pediatric leukemias?
4
leukemias? despite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!