Buffering Adaptive Immunity by Hydrogen Sulfide.

Cells

Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy.

Published: January 2022

T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (HS) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous HS modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells HS impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of HS as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834412PMC
http://dx.doi.org/10.3390/cells11030325DOI Listing

Publication Analysis

Top Keywords

adaptive immunity
8
hydrogen sulfide
8
th1 th2
8
th2 th17
8
th17 treg
8
immunological responses
8
buffering adaptive
4
immunity hydrogen
4
sulfide cell-mediated
4
cell-mediated adaptive
4

Similar Publications

Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1.

View Article and Find Full Text PDF

Background: The host immune response plays a major role in the pathogenesis of periodontitis. A bibliometric study can be crucial to understanding the different processes involved in this area; however, to our knowledge, it has not been published until now. Therefore, a bibliometric analysis was conducted to assess research hotspots and global trends in scientific articles about the immune response in periodontitis published between 1952 and 2023.

View Article and Find Full Text PDF

B cell maturation is crucial for effective adaptive immunity. It requires a complex signalling network to mediate antibody diversification through mutagenesis. B cells also rely on queues from other cells within the germinal centre.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are key regulators of adaptive immunity, guiding T helper (Th) cell differentiation through antigen presentation, co-stimulation, and cytokine production. However, in steady-state conditions, certain DC subsets, such as Langerhans cells (LCs), induce T follicular helper (Tfh) cells and B cell responses without inflammatory stimuli. Using multiple mouse models and systems, we investigated the mechanisms underlying steady-state LC-induced adaptive immune responses.

View Article and Find Full Text PDF

Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!