: A Model System to Study Distinct Genetic Programs in Myoblast Fusion.

Cells

Molecular Embryology, Department of Biology, Philipps University Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany.

Published: January 2022

Muscle fibers are multinucleated cells that arise during embryogenesis through the fusion of mononucleated myoblasts. Myoblast fusion is a lifelong process that is crucial for the growth and regeneration of muscles. Understanding the molecular mechanism of myoblast fusion may open the way for novel therapies in muscle wasting and weakness. Recent reports in and mammals have provided new mechanistic insights into myoblast fusion. In , muscle formation occurs twice: during embryogenesis and metamorphosis. A fundamental feature is the formation of a cell-cell communication structure that brings the apposing membranes into close proximity and recruits possible fusogenic proteins. However, genetic studies suggest that myoblast fusion in is not a uniform process. The complexity of the players involved in myoblast fusion can be modulated depending on the type of muscle that is formed. In this review, we introduce the different types of multinucleated muscles that form during development and provide an overview in advances that have been made to understand the mechanism of myoblast fusion. Finally, we will discuss conceptual frameworks in cell-cell fusion in and mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834112PMC
http://dx.doi.org/10.3390/cells11030321DOI Listing

Publication Analysis

Top Keywords

myoblast fusion
28
fusion
9
fusion muscle
8
mechanism myoblast
8
myoblast
7
model system
4
system study
4
study distinct
4
distinct genetic
4
genetic programs
4

Similar Publications

Cell-cell fusion is fundamental to developmental processes such as muscle formation, as well as to viral infections that cause pathological syncytia. An essential step in fusion is close membrane apposition, but cell membranes are crowded with proteins, glycoproteins, and glycolipids, all of which must be cleared before a fusion pore can be nucleated. Here, we find that cell surface crowding drastically reduces fusogenicity in multiple systems, independent of the method for driving fusion.

View Article and Find Full Text PDF

The giant striated muscle protein titin integrates into the developing sarcomere to form a stable myofilament system that is extended as myocytes fuse. The logistics underlying myofilament assembly and disassembly have started to emerge with the possibility to follow labeled sarcomere components. Here, we generated the mCherry knock-in at titin's Z-disk to study skeletal muscle development and remodeling.

View Article and Find Full Text PDF

Molecular Characteristics of Circ_002156 and Its Effects on Proliferation and Differentiation of Caprine Skeletal Muscle Satellite Cells.

Int J Mol Sci

November 2024

Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Article Synopsis
  • The study investigates the circular RNA circ_002156 in caprine skeletal muscle satellite cells (SMSCs), exploring its structure, authenticity, location, and expression in various tissues.
  • Circ_002156 is primarily found in the nuclei of SMSCs and shows higher expression levels in muscle tissues, peaking during the differentiation stages of these cells.
  • Inhibition of circ_002156 via small interfering RNA (si-circ_002156) increases SMC viability and proliferation, suggesting that circ_002156 plays a role in regulating SMC growth and differentiation.
View Article and Find Full Text PDF

Sarcopenic obesity is attenuated by E-syt1 inhibition via improving skeletal muscle mitochondrial function.

Redox Biol

December 2024

Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China. Electronic address:

In aging and metabolic disease, sarcopenic obesity (SO) correlates with intramuscular adipose tissue (IMAT). Using bioinformatics analysis, we found a potential target protein Extended Synaptotagmin 1 (E-syt1) in SO. To investigate the regulatory role of E-syt1 in muscle metabolism, we performed in vivo and in vitro experiments through E-syt1 loss- and gain-of-function on muscle physiology.

View Article and Find Full Text PDF

Mutations in protein -glucosyltransferase 1 ( ) cause a recessive form of limb-girdle muscular dystrophy (LGMD-R21) associated with reduced satellite cell number and NOTCH1 signaling in adult patient muscles and impaired myogenic capacity of patient-derived muscle progenitors. However, the roles of POGLUT1 in the development, function, and maintenance of satellite cells are not well understood. Here, we show that conditional deletion of mouse in myogenic progenitors leads to early lethality, postnatal muscle growth defects, reduced expression, abnormality in muscle extracellular matrix, and impaired muscle repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!