Although radiation therapy (RT) is one of the mainstays of head and neck cancer (HNC) treatment, innovative approaches are needed to further improve treatment outcomes. A significant challenge has been to design delivery strategies that focus high doses of radiation on the tumor tissue while minimizing damage to surrounding structures. In the last decade, there has been increasing interest in harnessing high atomic number materials (Z-elements) as nanoparticle radiosensitizers that can also be specifically directed to the tumor bed. Metallic nanoparticles typically display chemical inertness in cellular and subcellular systems but serve as significant radioenhancers for synergistic tumor cell killing in the presence of ionizing radiation. In this review, we discuss the current research and therapeutic efficacy of metal nanoparticle (MNP)-based radiosensitizers, specifically in the treatment of HNC with an emphasis on gold- (AuNPs), gadolinium- (AGdIX), and silver- (Ag) based nanoparticles together with the metallic oxide-based hafnium (Hf), zinc (ZnO) and iron (SPION) nanoparticles. Both in vitro and in vivo systems for different ionizing radiations including photons and protons were reviewed. Finally, the current status of preclinical and clinical studies using MNP-enhanced radiation therapy is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833418 | PMC |
http://dx.doi.org/10.3390/cancers14030514 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!