In head and neck squamous cell carcinoma (HNSCC) pathologic cervical lymph nodes (LN) remain important negative predictors. Current criteria for LN-classification in contrast-enhanced computed-tomography scans (contrast-CT) are shape-based; contrast-CT imagery allows extraction of additional quantitative data ("features"). The data-driven technique to extract, process, and analyze features from contrast-CTs is termed "radiomics". Extracted features from contrast-CTs at various levels are typically redundant and correlated. Current sets of features for LN-classification are too complex for clinical application. Effective eliminative feature selection (EFS) is a crucial preprocessing step to reduce the complexity of sets identified. We aimed at exploring EFS-algorithms for their potential to identify sets of features, which were as small as feasible and yet retained as much accuracy as possible for LN-classification. In this retrospective cohort-study, which adhered to the STROBE guidelines, in total 252 LNs were classified as "non-pathologic" ( = 70), "pathologic" ( = 182) or "pathologic with extracapsular spread" ( = 52) by two experienced head-and-neck radiologists based on established criteria which served as a reference. The combination of sparse discriminant analysis and genetic optimization retained up to 90% of the classification accuracy with only 10% of the original numbers of features. From a clinical perspective, the selected features appeared plausible and potentially capable of correctly classifying LNs. Both the identified EFS-algorithm and the identified features need further exploration to assess their potential to prospectively classify LNs in HNSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833684PMC
http://dx.doi.org/10.3390/cancers14030477DOI Listing

Publication Analysis

Top Keywords

feature selection
8
head neck
8
features contrast-cts
8
sets features
8
features
7
benchmarking eliminative
4
eliminative radiomic
4
radiomic feature
4
selection head
4
neck lymph
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!