Sertoli, Leydig, and Spermatogonial Cells' Specific Gene and Protein Expressions as Dog Testes Evolve from Immature into Mature States.

Animals (Basel)

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.

Published: January 2022

Sertoli, Leydig, and spermatogonial cells proliferate and differentiate from birth to puberty and then stay stable in adulthood. We hypothesized that expressions of spermatogenesis-associated genes are not enhanced with a mere increase of these cells' numbers. To accept this postulation, we investigated the abundances of Sertoli cell-specific and , Leydig cell-specific and , and spermatogonia-specific and markers in immature and mature canine testis. Four biological replicates of immature and mature testes were processed, and RT-PCR was performed to elucidate the cells' specific markers. The data were analyzed by ANOVA, using the 2 method to ascertain differences in mRNA expressions. In addition, Western blot and IHC were performed. Gene expressions of all the studied cells' specific markers were down-regulated ( < 0.05) in adult testis compared with immature testis. Western blot and immunohistochemistry showed the presence of these proteins in the testis. Protein expressions were greater in immature testis compared with mature testis ( < 0.05). Despite the obvious expansion of these cells' numbers from immature to adult testis, the cells' specific markers were not enriched in mature testis compared with immature dog testis. The results support the postulation that the gene expressions do not directly correlate with the increase of the cell numbers during post-natal development but changes in gene expressions show functional significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833615PMC
http://dx.doi.org/10.3390/ani12030271DOI Listing

Publication Analysis

Top Keywords

cells' specific
16
immature mature
12
specific markers
12
gene expressions
12
testis compared
12
testis
9
sertoli leydig
8
leydig spermatogonial
8
protein expressions
8
cells' numbers
8

Similar Publications

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker.

Front Biosci (Landmark Ed)

January 2025

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.

Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.

View Article and Find Full Text PDF

Hyperactivity and Pro-inflammatory Functions of Platelets in Diabetes.

Front Biosci (Landmark Ed)

January 2025

Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK.

Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!