Intensification of the shrimp sector, also referred to as vertical expansion, has been predominately driven by consecutive incidences of global disease outbreaks, which have caused enormous economic loss for the main producer countries. A growing segment of the shrimp farming industry has opted to use production systems with higher density, biosecurity, and operating control to mitigate the risks posed by disease. However, successful super-intensive shrimp production is reliant on an advanced understanding of many important biological and economic parameters in the farming system, coupled with effective monitoring, to maintain optimal production. Compared to traditional extensive or semi-intensive systems, super-intensive systems require higher inputs of feed, energy, labor, and supplements. These systems are highly sensitive to the interactions between these different inputs and require that the biological and economical parameters of farming are carefully balanced to ensure success. Advancing nutritional knowledge and tools to support consistent and efficient production of shrimp in these high-cost super-intensive systems is also necessary. Breeding programs developing breeding-lines selected for these challenging super-intensive environments are critical. Understanding synergies between the key areas of production systems, nutrition, and breeding are crucial for super-intensive farming as all three areas coalesce to influence the health of shrimp and commercial farming success. This article reviews current strategies and innovations being used for in production systems, nutrition, and breeding, and discusses the synergies across these areas that can support the production of healthy and high-quality shrimp in super-intensive systems. Finally, we briefly discuss some key issues of social license pertinent to the super-intensive shrimp farming industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833552 | PMC |
http://dx.doi.org/10.3390/ani12030236 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom.
Many experimental platforms for quantum science depend on state control via laser fields. Frequently, however, the control fidelity is limited by optical phase noise. This is exacerbated in stabilized laser systems where high-frequency phase noise is an unavoidable consequence of feedback.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Quantum Lab, Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany.
The phase estimation algorithm is crucial for computing the ground-state energy of a molecular electronic Hamiltonian on a quantum computer. Its efficiency depends on the overlap between the Hamiltonian's ground state and an initial state, which tends to decay exponentially with system size. We showcase a practical orbital optimization scheme to alleviate this issue.
View Article and Find Full Text PDFDiagnosis (Berl)
January 2025
Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Objectives: To examine factors impacting diagnostic evaluation of suspected deep vein thrombosis (DVT) by analyzing the test ordering patterns and provider decision-making within a universal health coverage system in Hungary.
Methods: We analyzed test orders for suspected DVT between 2007 and 2020, and the financial framework influencing diagnostic practices. An anonymous survey was also conducted among Emergency Department physicians to explore factors influencing diagnostic decision-making.
Neurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology with Institute of Translational Neurology, University Hospital 4 Münster, Germany.
Background And Objectives: Levels of activated complement proteins in the CSF are increased in people with multiple sclerosis (MS) and are associated with clinical disease severity. In this study, we determined whether complement activation profiles track with quantitative MRI metrics and liquid biomarkers indicative of disease activity and progression.
Methods: Complement components and activation products (Factor H and I, C1q, C3, C4, C5, Ba, Bb, C3a, C4a, C5a, and sC5b-9) and liquid biomarkers (neurofilament light chain, glial fibrillary acidic protein [GFAP], CXCL-13, CXCL-9, and IL-12b) were quantified in the CSF of 112 patients with clinically isolated syndromes and 127 patients with MS; longitudinal MRIs according to a standardized protocol of the Swiss MS cohort were assessed.
J Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!