We study the electronic transport of armchair (AC) and zigzag (ZZ) gated phosphorene junctions. We find confined states for both direction-dependent phosphorene junctions. In the case of AC junctions confined states are reflected in the transmission properties as Fabry-Pérot resonances at normal and oblique incidence. In the case of ZZ junctions confined states are invisible at normal incidence, resulting in a null transmission. At oblique incidence Fabry-Pérot resonances are presented in the transmission as in the case of AC junctions. This invisibility or electronic cloaking is related to the highly direction-dependent pseudospin texture of the charge carriers in phosphorene. Electronic cloaking is also manifested as a series of singular peaks in the conductance and as inverted peaks in the Seebeck coefficient. The characteristics of electronic cloaking are also susceptible to the modulation of the phosphorene bandgap and an external magnetic field. So, electronic cloaking in phosphorene junctions in principle could be tested through transport, thermoelectric or magnetotransport measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac54e4 | DOI Listing |
EClinicalMedicine
February 2025
Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, Rady Children's Hospital of San Diego, San Diego, CA, USA.
Background: Children from racial and ethnic minority groups are at greater risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether they have increased risk for post-acute sequelae of SARS-CoV-2 (PASC). Our objectives were to assess whether the risk of respiratory and neurologic PASC differs by race/ethnicity and social drivers of health.
Methods: We conducted a retrospective cohort study of individuals <21 years seeking care at 24 health systems across the U.
Micromachines (Basel)
November 2024
College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Metamaterial absorbers have gained widespread applications in fields such as sensing, imaging, and electromagnetic cloaking due to their unique absorption characteristics. This paper presents the design and fabrication of a novel K-band polarization-sensitive metamaterial absorber, which operates in the frequency range of 20.76 to 24.
View Article and Find Full Text PDFAdv Mater
January 2025
National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index.
View Article and Find Full Text PDFNanoscale
December 2024
National Key Laboratory of Advanced Micro and Nano Fabrication Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Broadband metamaterial absorbers in the long wavelength infrared region are promising in applications including thermal imaging, cloaking, radiative cooling and IR signature suppression. Although high absorption over the long wavelength infrared region has been extensively achieved, the challenge is to shrink both the thickness and lateral footprint of unit absorbing structures. Here, a compact broadband long wavelength infrared metamaterial absorber consisting of multilayered Ge/Ti/Ge/SiO hybrid cylindrical structures, whose period and thickness are only ∼1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
Invisibility─the remarkable ability to render objects imperceptible─has long been a persistent dream of humankind. However, traditional cloaking materials are typically rigid and inflexible, limiting their adaptability to various shapes and requirements. Even when flexibility is achieved, uncontrollable scattering in complex electromagnetic environments continues to pose significant challenges in the design of flexible cloaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!