Background & Aims: Although the treatment of hepatocellular carcinoma (HCC) has been revolutionized by the advent of effective systemic therapies, the prognosis of patients with HCC remains dismal. Herein, we examined the pathophysiological role of PARG and assessed the utility of targeting dePARylation for HCC therapy.
Methods: The oncogenic function of PARG was evaluated in 2 orthotopic xenograft models and a Parg mice model. The therapeutic efficacy of PARG inhibitors in combination with an anti-PD-1 antibody were assessed in murine orthotopic models. Microarray analysis was used to evaluate the pathological relevance of the PARG/DDB1/c-Myc/MMR axis.
Results: High PARG expression was strongly associated with poor HCC prognosis. Hepatocyte-specific PARG deletion significantly impaired liver tumorigenesis. PARG promoted HCC growth and metastasis through DDB1-dependent modulation of c-Myc. Specifically, PARG dePARylated DDB1 and consequently promoted DDB1 autoubiquitination, thus stabilizing the c-Myc protein in HCC cells. PARG downregulation attenuated c-Myc-induced MMR expression and PARG deficiency was correlated with a favorable prognosis in patients with HCC treated with anti-PD-1-based immunotherapy. In addition, PARG inhibitors could act in synergy with anti-PD-1 antibodies in orthotopic mouse models.
Conclusions: PARG can act as an oncogene in HCC by modulating PARG/DDB1/c-Myc signaling and could be used as a biomarker to identify patients with HCC who may benefit from anti-PD-1 treatment. Our findings suggest that co-inhibition of PARG and PD-1 is an effective novel combination strategy for patients with HCC.
Lay Summary: The increase in deaths due to hepatocellular carcinoma (HCC) is a growing concern, with the mechanisms responsible for HCC development still incompletely understood. Herein, we identify a novel mechanism by which the protein PARG contributes to HCC development. Inhibition of PARG increased the efficacy of anti-PD-1 therapy (a type of immunotherapy) in HCC. These findings support the future clinical development of PARG inhibitors, potentially in combination with anti-PD-1 inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhep.2022.01.026 | DOI Listing |
Int J Biol Macromol
December 2024
Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China. Electronic address:
Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is an important reversible post-translational protein modification in all eukaryotes, including plant pathogenic fungi. Previously, we revealed that FonPARP1, an active PARP, is crucial for the pathogenicity of Fusarium oxysporum f. sp.
View Article and Find Full Text PDFActa Biomater
December 2024
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. Electronic address:
Immunotherapy has emerged as a highly promising strategy in the realm of cancer treatment, wherein immunogenic cell death (ICD) is considered a potential trigger for anti-tumor immunity by inducing adaptive immunity to dying cell antigens. This process is often accompanied by the exposure, active secretion, or passive release of a large number of damage-associated molecular patterns (DAMPs), which activate dendritic cells (DCs) and enhance their antigen-presenting capacity. Subsequently, it promotes the recruitment and activation of cytotoxic T lymphocytes, ultimately leading to tumor growth inhibition.
View Article and Find Full Text PDFJ Mol Cell Biol
December 2024
Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
Poly(ADP-ribose) glycosylhydrolase (PARG) is an enzyme involved in hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PAR), which are primarily found in the nucleus. Along with poly(ADP-ribose) polymerase (PARP), PARG regulates the level of PAR in cells, playing a crucial role in DNA maintenance and repair processes. Recent studies have revealed elevated levels of PARG in various cancers, such as breast, liver, prostate, and esophageal cancers, indicating a link to unfavorable cancer outcomes.
View Article and Find Full Text PDFNeurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) are characterized by complex etiologies, often involving disruptions in functions of RNA/DNA binding proteins (RDBPs) such as FUS and TDP-43. The cytosolic mislocalization and aggregation of these proteins are linked to accumulation of unresolved stress granules (SGs), which exacerbate the disease progression. Poly-ADP-ribose polymerase (PARP)-mediated PARylation plays a critical role in this pathological cascade, making it a potential target for intervention.
View Article and Find Full Text PDFNeoplasia
January 2025
Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy. Electronic address:
The ADP-ribosyl hydrolases PARG and ARH3 counteract PARP enzymatic activity by removing ADP-ribosylation. PARG and ARH3 activities have a synthetic lethal effect; however, the specific molecular mechanisms underlying this response remain unknown. Here, we show that the PARG and ARH3 synthetic lethality is enhanced further in the presence of DNA alkylating agents, suggesting that the inability to revert ADP-ribosylation primarily affects the repair of alkylated DNA bases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!