The essential cysteines in the CIPC motif of the thioredoxin-like Trypanosoma brucei MICOS subunit TbMic20 do not form an intramolecular disulfide bridge in vivo.

Mol Biochem Parasitol

Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic. Electronic address:

Published: March 2022

The mitochondrial protein import machinery of trypanosomatids is highly divergent from that of the well-studied models such as baker's yeast. A notable example is that the central catalyst of the mitochondrial intermembrane space import and assembly pathway (MIA), named Mia40, is missing in trypanosomatids. Mia40 works in a two-step process. First it recognizes by direct binding reduced MIA substrate proteins and then catalyzes their oxidative folding to produce intramolecular disulfide bridges. It was recently proposed that a thioredoxin-like subunit of the trypanosomal mitochondrial contact site and cristae organizing system (MICOS) called TbMic20 may be the Mia40 replacement. Our study performed on procyclic stage of the parasite revealed that each of the two cysteines in TbMic20's active site is essential for the stability of MIA substrate proteins although they do not form a disulfide bridge in vivo. The two cysteines of Mia40's active site form an intramolecular disulfide bridge at steady state, which is a prerequisite for its oxidative folding of MIA substrates. Thus, we conclude that TbMic20 is unlikely to represent a bona fide Mia40 replacement and plays a still unresolved role in the stability and/or import of MIA substrates in trypanosomatids. Despite this, the effect of TbMic20 depletion and mutation indicates that the trypanosomal MICOS complex still plays a vital role in the maturation and/or stability of proteins imported by the MIA pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2022.111463DOI Listing

Publication Analysis

Top Keywords

intramolecular disulfide
12
disulfide bridge
12
form intramolecular
8
bridge vivo
8
mia substrate
8
substrate proteins
8
oxidative folding
8
mia40 replacement
8
active site
8
mia substrates
8

Similar Publications

Bgl2p is a major, conservative, constitutive glucanosyltransglycosylase of the yeast cell wall (CW) with amyloid amino acid sequences, strongly non-covalently anchored in CW, but is able to leave it. In the environment, Bgl2p can form fibrils and/or participate in biofilm formation. Despite a long study, the question of how Bgl2p is anchored in CW remains unclear.

View Article and Find Full Text PDF

This research investigated the effectiveness of supercritical fluid extrusion (SCFX) to modify the functional and structural characteristics of pea protein concentrate (PPC) and pea flour (PF). The results indicate that the SCFX process favorably modified the hydration properties of PPC and PF needed for developments in the structural and textural qualities of the meat analogs and other similar products. The water-holding capacity of extruded PPC and PF improved significantly.

View Article and Find Full Text PDF

Deep mutational scanning-guided design of a high-affinity helix-loop-helix peptide targeting G-CSF receptor.

Bioorg Med Chem Lett

December 2024

Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Electronic address:

At present, mid-sized binding peptides have emerged as a new class of drug modalities. We have de novo designed a helix-loop-helix (HLH) peptide (MW: ∼4,500), constructed phage-displayed libraries, and screened the libraries against a variety of disease-related proteins to successfully obtain molecular-targeting HLH peptides. The next essential step in developing HLH peptides into therapeutics involves affinity engineering to optimize binding affinity and specificity.

View Article and Find Full Text PDF

Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level.

View Article and Find Full Text PDF
Article Synopsis
  • Protein crosslinks caused by oxidative stress are linked to diseases like atherosclerosis, Alzheimer's, and Parkinson's, but their specific nature and locations in proteins remain unclear.
  • A new method utilizing "light" and "heavy" isotope-labeled reagents for efficient amine labeling of crosslinked peptides has shown improved identification and quantification over previous techniques.
  • This approach has led to the successful identification of novel crosslinks in proteins like β-casein and α-synuclein, as well as effective mapping of disulfide bonds in serum albumin, highlighting its versatility for studying protein modifications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!