A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic elution of residual ammonium leaching agent from weathered crust elution-deposited rare earth tailings by magnesium chloride. | LitMetric

Dynamic elution of residual ammonium leaching agent from weathered crust elution-deposited rare earth tailings by magnesium chloride.

Environ Res

Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China.

Published: July 2022

The release of residual ammonium (RA) leaching agent from weathered crust elution-deposited rare earth tailings would cause serious environmental pollution, and it was necessary to efficiently remove it from the ore body before the mine closure. In this study, occurrence states of the RA were determined and dynamic elution of RA from rare earth tailings by using magnesium chloride as eluent was investigated. Effects of initial concentration, pH, flow rate, and particle size on the ammonium removal efficiency were investigated, and variations of ammonium occurrence states before and after elution were determined. Lastly, elution mechanism was discussed. Results showed that removal efficiency of RA by magnesium chloride was significantly higher than that by deionized water, and elution efficiency of RA could reach about 95.7% at the optimum laboratory experiment conditions. Energy dispersive spectrometer (EDS) analysis illustrated that the residual ammonium was replaced by Mg during the elution process, and occurrence state experimental results showed that 94.0% of water-soluble and adsorbable ammonium was eluted. The empirical kinetic equation of eluting RA by magnesium chloride was established as 1-2/3α-(1-α)= 0.02*Ct. This study provided a valuable method for reducing environmental pollution caused by the release of the residual ammonium from the rare earth tailings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.112935DOI Listing

Publication Analysis

Top Keywords

residual ammonium
16
rare earth
16
earth tailings
16
magnesium chloride
16
dynamic elution
8
ammonium leaching
8
leaching agent
8
agent weathered
8
weathered crust
8
crust elution-deposited
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!