Background: Gliomas are complex tumors with several genetic aberrations and diverse metabolic programs contributing to their aggressive phenotypes and poor prognoses. This study defines key metabolic features that can be used to differentiate between glioma subtypes, with potential for improved diagnostics and subtype targeted therapy.
Methods: Cross-platform global metabolomic profiling coupled with clinical, genetic, and pathological analysis of glioma tissue from 224 tumors-oligodendroglioma (n = 31), astrocytoma (n = 31) and glioblastoma (n = 162)-were performed. Identified metabolic phenotypes were evaluated in accordance with the WHO classification, IDH-mutation, 1p/19q-codeletion, WHO-grading 2-4, and MGMT promoter methylation.
Results: Distinct metabolic phenotypes separate all six analyzed glioma subtypes. IDH-mutated subtypes, expressing 2-hydroxyglutaric acid, were clearly distinguished from IDH-wildtype subtypes. Considerable metabolic heterogeneity outside of the mutated IDH pathway were also evident, with key metabolites being high expression of glycerophosphates, inositols, monosaccharides, and sugar alcohols and low levels of sphingosine and lysoglycerophospholipids in IDH-mutants. Among the IDH-mutated subtypes, we observed high levels of amino acids, especially glycine and 2-aminoadipic acid, in grade 4 glioma, and N-acetyl aspartic acid in low-grade astrocytoma and oligodendroglioma. Both IDH-wildtype and mutated oligodendroglioma and glioblastoma were characterized by high levels of acylcarnitines, likely driven by rapid cell growth and hypoxic features. We found elevated levels of 5-HIAA in gliosarcoma and a subtype of oligodendroglioma not yet defined as a specific entity, indicating a previously not described role for the serotonin pathway linked to glioma with bimorphic tissue.
Conclusion: Key metabolic differences exist across adult glioma subtypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435506 | PMC |
http://dx.doi.org/10.1093/neuonc/noac042 | DOI Listing |
Arch Pathol Lab Med
January 2025
From the Department of Pathology, University of Michigan Medical School, Ann Arbor.
Context.—: High-grade astrocytoma with piloid features (HGAP) is a newly recognized glioma defined by its methylation profile. Understanding of its clinical, histologic, and molecular characteristics continues to evolve.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Background: Central nervous system (CNS) tumors lead to cancer-related mortality in children. Genetic ancestry-associated cancer prevalence and outcomes have been studied, but is limited.
Methods: We performed genetic ancestry prediction in 1,452 pediatric patients with paired normal and tumor whole genome sequencing from the Open Pediatric Cancer (OpenPedCan) project to evaluate the influence of reported race and ethnicity and ancestry-based genetic superpopulations on tumor histology, molecular subtype, survival, and treatment.
Front Immunol
January 2025
Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China.
Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.
Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.
Heliyon
January 2025
Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation.
View Article and Find Full Text PDFNeurooncol Adv
December 2024
Shanghai Medical College, Fudan University, Shanghai, China.
Background: Isocitrate dehydrogenase (IDH)-mutant gliomas generally have a better prognosis than IDH-wild-type glioblastomas, and the extent of resection significantly impacts prognosis. However, there is a lack of integrated tools for predicting outcomes based on molecular subtypes and treatment modalities. This study aimed to identify factors influencing gross total resection (GTR) rates and to develop a clinical prognostic tool for IDH-mutant gliomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!