A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DoTA: Unsupervised Detection of Traffic Anomaly in Driving Videos. | LitMetric

Video anomaly detection (VAD) has been extensively studied for static cameras but is much more challenging in egocentric driving videos where the scenes are extremely dynamic. This paper proposes an unsupervised method for traffic VAD based on future object localization. The idea is to predict future locations of traffic participants over a short horizon, and then monitor the accuracy and consistency of these predictions as evidence of an anomaly. Inconsistent predictions tend to indicate an anomaly has occurred or is about to occur. To evaluate our method, we introduce a new large-scale benchmark dataset called Detection of Traffic Anomaly (DoTA)containing 4,677 videos with temporal, spatial, and categorical annotations. We also propose a new VAD evaluation metric, called spatial-temporal area under curve (STAUC), and show that it captures how well a model detects both temporal and spatial locations of anomalies unlike existing metrics that focus only on temporal localization. Experimental results show our method outperforms state-of-the-art methods on DoTA in terms of both metrics. We offer rich categorical annotations in DoTA to benchmark video action detection and online action detection methods. The DoTA dataset has been made available at: https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2022.3150763DOI Listing

Publication Analysis

Top Keywords

detection traffic
8
traffic anomaly
8
driving videos
8
temporal spatial
8
categorical annotations
8
methods dota
8
action detection
8
detection
5
anomaly
5
dota
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!