Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms.

ACS Sens

State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Published: February 2022

On the basis of an abundance of elemental plasmonic nanocrystals identifiable by their unique morphology and intrinsic optoelectronic properties, it is necessary to rationally tailor the structural parameters to optimize the functionalities of nanoassemblies for application as plasmonic circuits/devices. Among them, the plasmonic superlattice membrane has emerged as a novel optically active metamaterial, which is constructed by nanocrystals at a two-dimensional (2D) plane with a highly ordered structure and strong plasmonic coupling interactions. Here, we report on the fabrication of a novel plasmonic superlattice membrane using bimetallic core-shell nano-sea urchins (Nano-SEUs) as meta-atoms. Under the guidance of soft-ligand balancing in conjugation with drying-mediated self-assembly at the air/water interface, well-defined giant 2D superlattices with total lateral dimensions of up to 5 mm wide and 80 nm thick have been synthesized, corresponding to an aspect ratio of 62 500. Programmable morphology control over the Nano-SEUs has been achieved in high yield by rationally tuning the spiky branches as well as the thickness of the silver shell, allowing systematic variation of the plasmonic properties of the membrane. Such superlattice membranes exhibited a strong and reproducible surface-enhanced Raman spectroscopy (SERS) signal that originates from interparticle coupling and electric ()-field enhancement, enabling an enhancement factor of up to 10. We also demonstrated that the fabricated membrane allows the label-free SERS detection of dopamine from 0.1 nM to 1 μM. Thus, this giant Nano-SEU assembled superlattice membrane can be used as a SERS substrate for on-spot biomarker detection, which paves a robust and inexpensive avenue for highly sensitive and reliable biomedical sensing and diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.1c02556DOI Listing

Publication Analysis

Top Keywords

plasmonic superlattice
12
superlattice membrane
12
superlattice membranes
8
nano-sea urchins
8
surface-enhanced raman
8
raman spectroscopy
8
plasmonic
7
membrane
5
membranes based
4
based bimetallic
4

Similar Publications

Designing Hybrid Plasmonic Superlattices with Spatially Confined Responsive Heterostructural Units.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.

View Article and Find Full Text PDF

Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled CuO-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum.

View Article and Find Full Text PDF

Strong Coupling between Moiré-Type Plasmons and Phonons in Suspended Monolayer Metallic Twisted Superlattices.

Nano Lett

December 2024

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

We demonstrate both experimentally and analytically a strong coupling phenomenon between moiré-type plasmons and phonons within moiré superlattices. We study the dependence of moiré wave vector and the twist angle and numerically simulate and experimentally fabricate metallic moiré superlattices on a suspended thin film SiO substrate at different twist angles. The results suggest that the coupling strength initially increases and then decreases with increasing twist angles.

View Article and Find Full Text PDF

Protein Cage Directed Assembly of Binary Nanoparticle Superlattices.

Adv Sci (Weinh)

December 2024

Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, 00076, Finland.

Inorganic nanoparticles can be assembled into superlattices with unique optical and magnetic properties arising from collective behavior. Protein cages can be utilized to guide this assembly by encapsulating nanoparticles and promoting their assembly into ordered structures. However, creating ordered multi-component structures with different protein cage types and sizes remains a challenge.

View Article and Find Full Text PDF

A central paradigm of moiré materials relies on the formation of superlattices that yield enlarged effective crystal unit cells. While a critical consequence of this phenomenon is the celebrated flat electronic bands that foster strong interaction effects, the presence of superlattices has further implications. Here we explore the advantages of moiré superlattices in twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) for passively enhancing optical conductivity in the low-energy regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!