The recent pandemic due to the COVID-19 virus has caused a global catastrophe. ACE2 and TMPRSS2 are recognized as key targets for viral entry into the host cells. The pandemic has led to the utilization of many synthetic drugs; however, due to various side effects, there is still no effective drug available against the virus. Several natural approaches have been devised, including herbal and ayurvedic medicines, that have proven to be effective against the COVID-19 virus. In the present study, the effect of phytocompounds of Piper longum and Ocimum sanctum on ACE2 and TRMPSS2 proteins has been studied. The in silico study is done using computational tools of networks of protein-protein interaction, molecular docking, and drug assessment in terms of physicochemical properties, drug-likeness, lipophilicity, water solubility, and pharmacokinetics. Out of selected phytoconstituents, vicenin 2, rosmarinic acid, and orientin were found to have the highest efficacy in terms of molecular interaction and drug-likeness properties against ACE2 and TMPRSS2 host receptor proteins. Our in silico study proposes the therapeutic potential of phytocompounds from Piper longum and Ocimum sanctum in modulating ACE2 and TMPRSS2 expression. Targeting ACE2 and TMPRSS2 against the SARS-CoV2 by phytomolecules can serve as a rational approach for designing future anti-COVID drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853352 | PMC |
http://dx.doi.org/10.1007/s12010-022-03827-6 | DOI Listing |
Microbiol Spectr
January 2025
Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan.
SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs.
View Article and Find Full Text PDFPeerJ
January 2025
Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Background: The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that may influence expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19.
View Article and Find Full Text PDFIran J Otorhinolaryngol
January 2025
Department of Otorhinolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, India.
Introduction: The notable increase in cases of rhino-orbito-cerebral Mucormycosis during the COVID pandemic is alarming. Both share a common route of entry, the nasal mucosa, leading to speculation about whether similar receptors play a role in both diseases. We aim to compare the expression of ACE2 and TMPRSS2 in the nasal and paranasal sinus tissues among patients with COVID-19-associated Mucormycosis (CAM), COVID-19-negative mucormycosis (CNM), and healthy individuals.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco.
The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!