Probiotics and their Metabolites Reduce Oxidative Stress in Middle-Aged Mice.

Curr Microbiol

Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan.

Published: February 2022

Aging is an irreversible physiological degradation of living organisms. Accumulated oxidative stress and dysbiosis accelerate aging. Probiotics such as Lactobacillus and Bifidobacterium and their fermented metabolites (postbiotics) have been discovered to exhibit antioxidative activities that regulate oxidative stress and protect cells from oxidative damage. We screened selected Lactobacillus and Bifidobacterium strains and their postbiotics for potential antioxidative activity by using DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay. Strains with their metabolites were selected for mixed formula in experiments involving aging mice. The aged groups presented higher oxidative stress in the brain, liver, heart, and kidney than did young mice. However, treatment with probiotic strains and their postbiotics elevated antioxidative levels, especially in the high-dose probiotics plus postbiotics group. Next-generation sequencing data revealed positive microbiota alterations of Lactobacillus and Bifidobacterium and Akkermansia in the gut. Lactobacillus johnsonii and Akkermansia muciniphila exhibited effective enlargement of relative abundance. Besides, high-dose probiotics and high-dose probiotics plus postbiotics showed significant elevation in serum SCFAs, especially in butyrate. In conclusion, the formula containing Bifidobacterium animalis subsp. infantis BLI-02, Bifidobacterium breve Bv889, Bifidobacterium bifidum VDD088, B. animalis subsp. lactis CP-9, and Lactobacillus plantarum PL-02 and their metabolites may benefit aged people's health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843923PMC
http://dx.doi.org/10.1007/s00284-022-02783-yDOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
lactobacillus bifidobacterium
12
high-dose probiotics
12
strains postbiotics
8
probiotics postbiotics
8
animalis subsp
8
bifidobacterium
6
probiotics
5
oxidative
5
lactobacillus
5

Similar Publications

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.

View Article and Find Full Text PDF

Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.

View Article and Find Full Text PDF

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!