New molecularly engineered binuclear ruthenium(II) complexes for highly efficient near-infrared light-emitting electrochemical cells (NIR-LECs).

Dalton Trans

Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran.

Published: March 2022

From the practical point of view, the stability, response time and efficiency of near-infrared light-emitting electrochemical cells (NIR-LECs) are key factors. By using the high potential of chemical modification potential of the phenanthroimidazole ligand, three new binuclear ruthenium(II) complexes with an alkyl spacer as the NIR-emitter were designed and synthesized. NIR-LECs based on these complexes exhibit near-infrared emission at the maximum wavelength of up to 705 nm and with an EQE of up to 0.72% at 4.0 V, which are among the highest values for NIR-LECs based on cationic binuclear ruthenium(II) complexes reported so far. The lifetimes of NIR-LECs based on binuclear complexes were increased about 1.5-to-4-fold with respect to the ones based on mononuclear complexes. Furthermore, a significant decrease in the turn-on time of NIR-LECs by chemical tethering of a new ionic methylpyridinium moiety from 6.3 to 1.4 minutes was observed. It seems that this combinational modification approach can open a new avenue for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt03212gDOI Listing

Publication Analysis

Top Keywords

binuclear rutheniumii
12
rutheniumii complexes
12
nir-lecs based
12
near-infrared light-emitting
8
light-emitting electrochemical
8
electrochemical cells
8
cells nir-lecs
8
complexes
6
nir-lecs
6
molecularly engineered
4

Similar Publications

The five-coordinate complex [RuCl(PNP)] () was synthesized from the binuclear [RuCl(-cym)] with a PNP-type ligand (PNP = 3,6-di--butyl-1,8-bis(dipropylphosphino)methyl)-9-carbazole - (Cbzdiphos )H) in a toluene solution, within 20 h at 110 °C, producing a green solid, which was precipitated with a 1/1 mixture of - pentane/HMDSO. The complex was characterized by NMR-H, C, and P{H}, mass spectroscopy-LIFDI, FTIR, UV/vis spectroscopy, and cyclic voltammetry, as well as a description of the optimized structure by DFT calculation. The reactivity of was investigated in the presence of potassium triethylborohydride (KBEtH, in THF solution of 1.

View Article and Find Full Text PDF

Developing an Arene Binuclear Ruthenium(II) Complex to Induce Ferroptosis and Activate the cGAS-STING Pathway: Targeted Inhibiting Growth and Metastasis of Triple Negative Breast Cancer.

J Med Chem

November 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.

To effectively inhibit the growth and metastasis of triple-negative breast cancer (TNBC), we developed a high-efficiency and low-toxicity arene ruthenium (Ru) complex based on apoferritin (AFt). To achieve this, we optimized a series of Ru(II) 1,10-phenanthroline-2,9-diformaldehyde thiosemicarbazone complexes by studying their structure-activity relationships to obtain an arene binuclear Ru(II) complex (C5) with significant cytotoxicity and high accumulation in the mitochondria of tumor cells. Subsequently, a C5-AFt nanoparticle (NPs) delivery system was constructed.

View Article and Find Full Text PDF

Three novel deep-red to near-infrared (DR to NIR) emitters based on mononuclear and dinuclear ruthenium(II) complexes with bulky structures were presented herein. For the first time, the unusual effects of metal coordination mode on the electroluminescence properties of a binuclear emitter were investigated. Unexpectedly, the mononuclear complexes showed superior performance in deep-red light-emitting electrochemical cells (DR-LEC) compared to the dinuclear complex.

View Article and Find Full Text PDF

A new set of binuclear arene ruthenium complexes [Ru(cymene)(k-NOS)(L1-L3)Cl] () encompassing furan-2-carboxamide-based aroylthiourea derivatives () was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes.

View Article and Find Full Text PDF

Breast cancer is the most dangerous type in women and its fatality rate has increased over the past decade. To develop more potent and target-specific breast cancer drugs, six arene ruthenium(II) complexes (1-6) containing naphthoyl benzhydrazine ligands (NL1-NL3) were synthesized and characterized by analytical and spectroscopic (infrared, UV-visible, NMR and HR-MS) methods. The SC-XRD analysis of 1 and 6 demonstrates the bis N^O bidentate binding nature of ligands to ruthenium ions and a pseudo-octahedral geometry around the Ru(II) ion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!