Hyaluronic acid-modified redox-sensitive hybrid nanocomplex loading with siRNA for non-small-cell lung carcinoma therapy.

Drug Deliv

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China.

Published: December 2022

A novel hyaluronic acid (HA)-modified hybrid nanocomplex HA-SeSe-COOH/siR-93C@PAMAM, which could efficiently deliver siRNA into tumor cells via a redox-mediated intracellular disassembly, was constructed for enhanced antitumor efficacy. Thereinto, siR-93C (siRNA) and positive PAMAM were firstly mixed into the electrostatic nano-intermediate, and then diselenide bond (-SeSe-)-modified HA was coved to shield excessive positive charges. This hybrid nanocomplex displayed uniform dynamic sizes, high stability, controlled zeta potential and narrow PDI distribution. Moreover, the -SeSe- linkage displayed GSH/ROS dual responsive properties, improving intracellular trafficking of siRNA. assays in A549 cell line presented that HA-SeSe-COOH/siR-93C@PAMAM has low cytotoxicity, rapid lysosomal escape and significant transfection efficiency; besides, an efficient proliferation inhibition ability and enhanced apoptosis. Furthermore, in animal studies, this negative-surfaced hybrid nanocomplex showed a prolonged circulation in blood and improved inhibition of tumor growth. All these results verified our hypothesis in this study that diselenide bonds-modified HA could promote not only stability and safety of nanoparticles but also intracellular behavior of siRNA via redox-dual sensitive properties; furthermore, this hybrid nanocomplex provided a visible potential approach for siRNA delivery in the antitumor field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856077PMC
http://dx.doi.org/10.1080/10717544.2022.2032874DOI Listing

Publication Analysis

Top Keywords

hybrid nanocomplex
20
sirna
6
hybrid
5
nanocomplex
5
hyaluronic acid-modified
4
acid-modified redox-sensitive
4
redox-sensitive hybrid
4
nanocomplex loading
4
loading sirna
4
sirna non-small-cell
4

Similar Publications

An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I.

Mikrochim Acta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes.

View Article and Find Full Text PDF

Bioinspired orthogonal-shaped protein-biometal nanocrystals enable oral protein absorption.

J Control Release

January 2025

Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:

With the growing number of marketed biological drugs, the development of technological strategies for their oral systemic absorption, becomes increasingly important. The harsh gastrointestinal environment and low permeability of the intestinal epithelium, represent a huge challenge for their systemic delivery. Herein, bioinspired in the physiological insulin-Zn interaction, the design of orthogonal-shaped protein-biometal hybrid nanocrystals, further enveloped by a bilayer of functional biomaterials, is reported.

View Article and Find Full Text PDF

Alzheimer's disease (AD) poses a significant burden on the economy and healthcare systems worldwide. Although the pathophysiology of AD remains debatable, its progression is strongly correlated with the accumulation of tau aggregates. Therefore, tau clearance from brain lesions can be a promising strategy for AD therapy.

View Article and Find Full Text PDF

Albumin Nanoparticle-Based Drug Delivery Systems.

Int J Nanomedicine

July 2024

School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China.

Article Synopsis
  • * The review covers different fabrication techniques for albumin nanoparticles, detailing their advantages and disadvantages.
  • * It also explores various modification strategies and discusses the application of albumin nanoparticles in treating critical diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!