DNA damage responses compete for cellular resources with metabolic pathways, but little is known about the metabolic consequences of impaired DNA replication, a process called replication stress. Here we characterized the metabolic consequences of DNA replication stress at endogenous DNA lesions by using mice with a disruption of Rev1, a translesion DNA polymerase specialized in the mutagenic replication of damaged DNA. Male and female Rev1 knockout (KO) mice were compared with wild-type (WT) mice and followed over time to study the natural course of body weight gain and glucose tolerance. Follow-up measurements were performed in female mice for in-depth metabolic characterization. Body weight and fat mass were only increased in female KO mice versus WT mice, whereas glucose intolerance and a reduction in lean mass were observed in both sexes. Female KO mice showed reduced locomotor activity while male KO mice showed increased activity as compared with their WT littermates. Further characterization of female mice revealed that lipid handling was unaffected by Rev1 deletion. An increased respiratory exchange ratio, combined with elevated plasma lactate levels and increased hepatic gluconeogenesis indicated problems with aerobic oxidation and increased reliance on anaerobic glycolysis. Supplementation with the NAD precursor nicotinamide riboside to stimulate aerobic respiration failed to restore the metabolic phenotype. In conclusion, replication stress at endogenous DNA lesions induces a complex metabolic phenotype, most likely initiated by muscular metabolic dysfunction and increased dependence on anaerobic glycolysis. Nicotinamide riboside supplementation after the onset of the metabolic impairment did not rescue this phenotype. An increasing number of DNA lesions interferes with cellular replication leading to metabolic inflexibility. We utilized Rev1 knockout mice as a model for replication stress, and show a sex-dependent metabolic phenotype, with a pronounced reduction of lean mass and glucose tolerance. These data indicate that in obesity, we may end up in an infinite loop where metabolic disturbance promotes the formation of DNA lesions, which in turn interferes with cellular replication causing further metabolic disturbances.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00357.2021DOI Listing

Publication Analysis

Top Keywords

replication stress
20
dna lesions
16
female mice
16
metabolic
13
metabolic phenotype
12
mice
10
replication
9
dna
9
metabolic dysfunction
8
metabolic consequences
8

Similar Publications

AP2A1 modulates cell states between senescence and rejuvenation.

Cell Signal

January 2025

Division of Bioengineering, Graduate School of Engineering Science, University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, University of Osaka, Japan; Global Center for Medical Engineering and Informatics, University of Osaka, Japan. Electronic address:

Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood.

View Article and Find Full Text PDF

Eclipta prostrata belongs to the Asteraceae family. The plant contains bioactive compounds like wedelolactone (WDL) and demethylwedelolactone (DW). Its transcriptomic information engaged with secondary metabolite biosynthesis is not available.

View Article and Find Full Text PDF

Objective: Prolonged Exposure for Primary Care (PE-PC) leverages an opportunity to provide evidence-based posttraumatic stress disorder (PTSD) care in the PC setting where many veterans present for services and can greatly increase treatment access. However, such acute, short-term intervention may not be effective for all PTSD patients.

Method: We analyzed data from a randomized clinical trial evaluating PE-PC to determine who may or may not benefit from PE-PC.

View Article and Find Full Text PDF

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Unlabelled: Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!