Reliable, predictable engineering of cellular behavior is one of the key goals of synthetic biology. As the field matures, biological engineers will become increasingly reliant on computer models that allow for the rapid exploration of design space prior to the more costly construction and characterization of candidate designs. The efficacy of such models, however, depends on the accuracy of their predictions, the precision of the measurements used to parametrize the models, and the tolerance of biological devices for imperfections in modeling and measurement. To better understand this relationship, we have derived an that provides a quantitative mathematical bound on the relationship between predictability of results, model accuracy, measurement precision, and device characteristics. We apply this relation to estimate measurement precision requirements for engineering genetic regulatory networks given current model and device characteristics, recommending a target standard deviation of 1.5-fold. We then compare these requirements with the results of an interlaboratory study to validate that these requirements can be met via flow cytometry with matched instrument channels and an independent calibrant. On the basis of these results, we recommend a set of best practices for quality control of flow cytometry data and discuss how these might be extended to other measurement modalities and applied to support further development of genetic regulatory network engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.1c00488 | DOI Listing |
Health Qual Life Outcomes
January 2025
School of Health Management, Harbin Medical University, Harbin, 150081, China.
Purpose: Given the recent update of SF-6Dv2, detailed data on utility scores for cancer patients by cancer type remain scarce in China and other regions, which limits the precision of cost-utility analyses (CUA) in cancer interventions. The aim of the study was to systematically evaluate utility scores of six common cancers in China measured using SF-6Dv2, and identify the potential factors associated with utility scores.
Methods: A hospital-based cross-sectional survey was conducted from August 2022 to December 2023.
Sci Rep
January 2025
School of Electrical Engineering, VIT University, Tamilnadu, 632014, India.
In the recent era, Lithium ion batteries plays a significant role in EV industry due to their high specific energy density, power density, low self-discharge rate, and prolonged lifespan. Modeling the battery precisely and estimating its State of Charge with great precision is essential to improve the performance of the lithium-ion batteries. Though numerous methods has been proposed for estimating the SOC, accurate estimation approach is not proposed yet since all these approaches consider the discrete-time dynamics of the battery.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
We report the existence of deterministic patterns in statistical plots of single-cell transcriptomic data. We develop a theory showing that the patterns are neither artifacts introduced by the measurement process nor due to underlying biological mechanisms. Rather they naturally emerge from finite sample size effects.
View Article and Find Full Text PDFPharmacol Res
January 2025
Centre of Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK; NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK. Electronic address:
Statins are first-line treatments in the primary and secondary prevention of cardiovascular disease. Clinical studies show statins act independently of lipid-lowering mechanisms to decrease C-reactive protein (CRP), an inflammation marker. We aim to elucidate genetic loci associated with CRP statin response.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!