Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, the optimization of factors for the fabrication of highly adsorptive activated carbon from agricultural waste (date stone) was investigated by using ZnCl as a chemical agent during the heat treatment. ZnCl acts as a dehydration agent during the heat treatment, allowing a better porosity. In addition, it boosts the fragmentation of the lignocellulosic structure and the condensation of carbon rings. The findings of this investigation showed that the synthesis conditions for better ZnCl chemical/heat carbonization to fabricate an adsorbent from date stone are 700 °C, 120 min, and 2.0 g/g. The characterization analysis showed that the as-prepared activated carbon exhibits a surface area of 1036 m/g, an iodine number of 928.5 mg/g, and phenol number of 2.1 mmol/g, which are comparable to commercial activated carbons. Batch sorption tests to remove methylene blue (MB) from water showed a maximum adsorption capacity of 384.6 mg/g using the prepared activated carbon. Equilibrium data was best fitted by the Langmuir isotherm model. It was found also that the kinetic adsorption data obeyed the pseudo-first order, and both external diffusion and intra-particle diffusion control the adsorption. Based on the obtained results, the optimization of synthesis conditions may help the transfer of technology in terms of agriculture-based material valorization towards the environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-19132-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!