A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Health Technology Adoption in Liver Disease: Innovative Use of Data Science Solutions for Early Disease Detection. | LitMetric

Health Technology Adoption in Liver Disease: Innovative Use of Data Science Solutions for Early Disease Detection.

Front Digit Health

National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, United Kingdom.

Published: January 2022

Chronic liver disease (CLD) is an ignored epidemic. Premature mortality is considerable and in the United Kingdom (UK) liver disease is in the top three for inequitable healthcare alongside heart and respiratory disease. Fifty percentage of patients with CLD are first diagnosed with cirrhosis after an emergency presentation translating to poorer patient outcomes. Traditional models of care have been based in secondary care when the need is at community level. Investigating patients for disease based on their risk factors at a population level in the community will identify its presence early when there is potential reversibility. Innovation is needed in three broad areas to improve clinical care in this area: better access to diagnostics within the community, integrating diagnostics across primary and secondary care and utilizing digital healthcare to enhance patient care. In this article, we describe how the Integrated Diagnostics for Early Detection of Liver Disease (ID-LIVER) project, funded by UK Research and Innovation, is developing solutions in Greater Manchester to approach the issue of diagnosis of liver disease at a population level. The ambition is to build on innovative pathways previously established in Nottingham by bringing together NHS organizations, academic partners and commercial organizations. The motivation is to co-create and implement a commercial solution that integrates multimodal diagnostics via cutting edge data science to drive growth and disrupt the currently inadequate model. The ambitious vision is for this to be widely adopted for early diagnosis and stratification of liver disease at a population level within the NHS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832876PMC
http://dx.doi.org/10.3389/fdgth.2022.737729DOI Listing

Publication Analysis

Top Keywords

liver disease
24
population level
12
disease
9
data science
8
secondary care
8
disease population
8
liver
6
care
5
health technology
4
technology adoption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!