A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An improved molecular inversion probe based targeted sequencing approach for low variant allele frequency. | LitMetric

Deep targeted sequencing technologies are still not widely used in clinical practice due to the complexity of the methods and their cost. The Molecular Inversion Probes (MIP) technology is cost effective and scalable in the number of targets, however, suffers from low overall performance especially in GC rich regions. In order to improve the MIP performance, we sequenced a large cohort of healthy individuals ( = 4417), with a panel of 616 MIPs, at high depth in duplicates. To improve the previous state-of-the-art statistical model for low variant allele frequency, we selected 4635 potentially positive variants and validated them using amplicon sequencing. Using machine learning prediction tools, we significantly improved precision of 10-56.25% ( < 0.0004) to detect variants with VAF > 0.005. We further developed biochemically modified MIP protocol and improved its turn-around-time to ∼4 h. Our new biochemistry significantly improved uniformity, GC-Rich regions coverage, and enabled 95% on target reads in a large MIP panel of 8349 genomic targets. Overall, we demonstrate an enhancement of the MIP targeted sequencing approach in both detection of low frequency variants and in other key parameters, paving its way to become an ultrafast cost-effective research and clinical diagnostic tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826764PMC
http://dx.doi.org/10.1093/nargab/lqab125DOI Listing

Publication Analysis

Top Keywords

targeted sequencing
12
molecular inversion
8
sequencing approach
8
low variant
8
variant allele
8
allele frequency
8
mip
5
improved
4
improved molecular
4
inversion probe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!