Dynamic Control of Self-Assembly of Amphiphilic Conjugated Alkenes in Water by Reactions.

ACS Omega

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou 510006, China.

Published: February 2022

Nature sets a great example of how to precisely control self-assembly to obtain distinct structures upon external stimuli and perform specific functions to sustain important biological tasks. In the present study, we report the design and control of self-assembly of an amphiphilic conjugated alkene in water. The morphologies of the self-assembled structures are highly dependent on the anions. The hydrophilic tosylate group can trigger the formation of nanotubes, while the less-hydrophilic inorganic bromide generates vesicles. The interchange of the two different structures can be controlled by employing different anions combined with a couple of reactions that act as signals. The result shown here provides an important tool for manipulating self-assembled behaviors in water and paves the way toward more complex systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829865PMC
http://dx.doi.org/10.1021/acsomega.1c07026DOI Listing

Publication Analysis

Top Keywords

control self-assembly
12
self-assembly amphiphilic
8
amphiphilic conjugated
8
dynamic control
4
conjugated alkenes
4
alkenes water
4
water reactions
4
reactions nature
4
nature sets
4
sets great
4

Similar Publications

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array.

ACS Sens

January 2025

CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.

View Article and Find Full Text PDF

Tailored Nucleation-Growth Strategy for Precise Self-assembly of Block Copolymers.

Chemistry

January 2025

Beijing Institute of Technology, Polymer Materials, 5 Zhongguancun Nandajie, 100081, Beijing, CHINA.

The self-assembly of block copolymers (BCPs) to form nanostructures of various morphologies and controllable dimensions has been a very promising research area in nanotechnology in recent decades. This review mainly summarizes the recent advances in precise and controllable self-assembly of BCPs through a tailored nucleation-growth strategy to modulate the self-assembly behavior of the BCPs. These efforts have led to a better understanding of the self-assembly mechanisms and opened new possibilities for creating novel materials with designable properties.

View Article and Find Full Text PDF

The flexibility and programmability of CRISPR-Cas technology have made it one of the most popular tools for biomarker diagnostics and gene regulation. Especially, the CRISPR-Cas12 system has shown exceptional clinical diagnosis and gene editing capabilities. Here, we discovered that although the top loop of the 5' handle of guide RNA can undergo central splitting, deactivating CRISPR-Cas12a, the segments can dramatically restore CRISPR function through nucleic acid self-assembly or interactions with small molecules and aptamers.

View Article and Find Full Text PDF

The concentrations of individual proteins vary between cells, both developmentally and stochastically. The functional consequences of this variation remain largely unexplored due to limited experimental tools to manipulate the relationship of protein concentration to activity. Here, we introduce a genetically encoded tool based on a tunable amyloid that enables precise control of protein concentration thresholds in cells.

View Article and Find Full Text PDF

Enzyme-instructed self-assembly (EISA) is a promising approach to anti-cancer therapeutics due to its precise targeting and unique cell death mechanism. In this study, we introduce a small molecule, DN6, which undergoes nitroreductase (NTR)-responsive liquid-liquid phase separation (LLPS) followed by a liquid-to-solid phase transition (LST) through a gel-like intermediate state, resulting in the formation of nanoaggregates with spatiotemporal control. The reduced form of DN6 (DN6R), owing to its aggregation-induced emission (AIE) and mitochondria-targeting capabilities, has been employed for organelle-specific imaging of tumor hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!